France
Mohamed Trebak, Marie Potier-Cartereau & Chistophe Vandier
France
Mohamed Trebak, Marie Potier-Cartereau & Chistophe Vandier
Hôtel Dupanloup
1 rue Dupanloup
45000 Orleans
France
Karol B. Barragán-Fonseca, Umberto Diecinove & David Giron
Novotel Tours-Centre Gare
15 rue Edouard Vaillant
37000 Tours
France
Lindy Holden-Dye, Fotini Koutroumpa & Cédric Neveu
Centre d’Études Supérieures de la Renaissance (CESR)
59 rue Néricault Destouches
37000 Tours
France
Lindy Holden-Dye
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
Salle Saint Libert
37, avenue André Malraux
37000 Tours
France
Château Belmont
57 rue Groison
37100 Tours
France
Château Belmont
57 rue Groison
37100 Tours
France
Prof. Francis Bambico & Prof. Catherine Belzung,
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
France
Prof. Emilie Munnier, Dr Yuri Dancik & Dr Franck Bonnier
France
Hôtel Dupanloup
1 rue Dupanloup
45000 Orleans
France
Prof. Remo Russo & Dr Valérie Quesniaux, Dr Bernhard Ryffel et Dr Isabelle Couillin
Hôtel Univers
5 boulevard Heurteloup
37000 Tours
France
Prof. Livio Casarini & Dr Eric Reiter
Bio3 Institute
15, rue du Plat d’Étain
37000 Tours
France
Bio3 Institute
15, rue du Plat d’Étain
37000 Tours
France
Hôtel Duanloup
1 rue Dupanloup
45000 Orléans
France
Hôtel Dupanloup
1, rue Dupanloup
45000 Orléans
France
Hôtel Dupanloup
1, rue Dupanloup
45000 Orléans
France
Hôtel Dupanloup
1 rue Dupanloup
45000 Orleans
France
Salle Saint Libert
37, avenue André Malraux
37000 Tours
France
Hôtel Dupanloup
1 rue Dupanloup
45000 Orleans
France
Dr Mahenina Jaovita Manase & Prof. Émilie Destandau
France
Dr Patricia Silva Gôlo & Dr Foteini Koutroumpa
Hôtel de Ville de Tours
Place Jean Jaurès
Salle Anatole France
37000 Tours
France
Hôtel de Ville de Tours
Place Jean Jaurès
Salle Anatole France
37000 Tours
France
Auditorium Charles Sadron
Avenue de la Recherche Scientifique Campus CNRS
45071 Orléans
France
Campus des 2 lions - Salle A261
50, Avenue Jean Portalis
37200 Tours
France
IRBI - Salle séminaire
Faculté des Sciences et Techniques
Avenue Monge, Parc Grandmont
37000 Tours
France
Prof. Livio Casarini
IRBI - Salle séminaire
Faculté des Sciences et Techniques
Avenue Monge, Parc Grandmont
37000 Tours
France
Prof. Stephen Foster
Hôtel de Ville de Tours
Place Jean Jaurès
37000 TOURS
France
Dr Alberto Marzo & Dr Ayache Bouakaz
Hôtel de Ville de Tours
Place Jean Jaurès
Salle Anatole France
37000 Tours
France
Dr Jean-Michel Escoffre & Prof. Damien Lacroix
Faculté de Droit de Tours - Salle 009
50 Avenue Jean Portalis - Hall A
37200 Tours
France
France
VIRTUAL MEETING
Prof. Feng Huang, Dr Eric Robert & Dr Augusto Stancampiano
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
France
VIRTUAL MEETING
Prof. Rita Singh & Dr Pascale Crépieux
France
VIRTUAL MEETING
Dr Duangjai Tungmunnithum & Dr Christophe Hano
Faculté de Droit, Amphithéâtre B - Bât. A
50 avenue Jean Portalis
37000 Tours
France
Faculté de Droit, Amphithéâtre B - Bât. A
50 avenue Jean Portalis
37000 Tours
France
France
VIRTUAL MEETING
Dr Franciska Vidáné Erdő, Dr Franck Bonnier & Prof. Emilie Munnier
UFR Sciences Pharmaceutiques - Amphi A30
Parc Grandmont
37200 TOURS
France
UFR Sciences Pharmaceutiques - Amphi A30
Parc Grandmont
37200 TOURS
France
France
VIRTUAL MEETING
Salle d'Assises du Tribunal judiciaire
& Salle Olivier Debré du Palais des Beaux-Arts -
37000 Tours
France
Dr Valérie Hayaert, Hélène Jagot & Christophe Regnard
Cosmetic Valley
1 place de la cathédrale
28000 Chartres
France
Faculté de Droit, Amphithéâtre F - Bât. B
50 avenue Jean Portalis
37000 Tours
France
France
Dr Cristina Del Rincon Castro & Dr Elisabeth Herniou
VIRTUAL MEETING
France
France
Prof. Maxwell Hincke & Dr Sophie Réhault-Godbert
VIRTUAL MEETING
France
VIRTUAL MEETING
France
Prof. Adrian Wolstenholme
VIRTUAL MEETING
France
VIRTUAL MEETING
The registration is free but mandatory
France
Dr Magdalena Malinowska & Dr Arnaud Lanoue
VIRTUAL MEETING
The registration is free but mandatory
France
Dr Jean-François Deluchey & Prof. Nathalie Champroux
Salle du Conseil ( Bât. B, 2ème étage)
UFR de Droit, Economie et Sciences Sociales
50 Avenue Jean Portalis
37200 Tours
France
VIRTUAL MEETING
The registration is free but mandatory
France
Prof. Pieter Hiemstra & Dr Mustapha Si-Tahar
Hôtel de Ville de Tours
Place Jean Jaurès
37000 Tours
France
Dr Grégory Guirimand, Dr Vincent Courdavault & Prof. Nathalie Guivarc’h
Hôtel Dupanloup
1 rue Dupanloup
45000 Orleans
France
Dr Thimmalapura Marulappa Vishwanatha & Dr Vincent Aucagne
Hôtel de Ville de Tours
Place Jean Jaurès
37000 Tours
France
Dr Yuri Dancik & Dr Franck Bonnier
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
Dr Eric Robert, Dr Jean-Michel Pouvesle & Dr Catherine Grillon
La Villa Rabelais
116 boulevard Béranger
37000 Tours
France
Prof. Manuela Simoni, Dr Frédéric Jean-Alphonse, Dr Pascale Crépieux & Dr Eric Reiter
MSH Val de Loire
33 allée Ferdinand de Lesseps
37200 Tours
France
Dr Marcelo Lorenzo & Prof. Claudio Lazzari
Institute of Organic and Analytical Chemistry (CNRS, University of Orléans)
Rue de Chartres
45000 Orléans
France
Dr Itziar Tueros
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
Dr Norinne Lacerda-Queiroz & Dr Valérie Quesniaux
CNRS - Délégation Centre Limousin Poitou-Charentes - Amphithéâtre Charles Sadron
3E avenue de la Recherche Scientifique
45100 Orléans
France
Dr Endre Szili
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
Pr Marek Łos & Dr Catherine Grillon
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
Dr William Horsnell & Dr Bernhard Ryffel
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
Dr Kristina Djanashvili & Dr Eva Jakab Toth
Hôtel de Ville de Tours
Place Jean Jaurès
37000 Tours
France
Pr Michiel Postema & Dr Ayache Bouakaz
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
Dr Mauro Simonato & Dr Jérôme Rousselet
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
Dr Mauro Manno & Pr Richard Daniellou
Hôtel Dupanloup
1 rue Dupanloup
45000 Orléans
France
Dr Sohail Akhter & Pr Chantal Pichon
Coordinator of the consortium: Dr Vincent Courdavault
Plant Biocompounds and Biotechnology (BBV) / University of Tours – FR
Coordinator of the consortium: Prof. Christine Rousselle
PRISME / University of Orléans - FR
Coordinator of the consortium: Dr Brice Korkmaz
Centre of studies for Respiratory Pathologies (CEPR) / inserm, University of Tours - FR
Background: The use of electromagnetic fields has been considered as adjuvant therapy for the treatment of cancer given that some clinical trials have shown that the irradiation of cancer cells with electromagnetic fields can slow down the disease progression.
Aims: We hypothesize that this effect could be amplified by irradiating tumor cells with electromagnetic fields having frequencies close to the natural resonant frequencies of membrane channels in tumor cells, in order to obtain a significant change of the ion flux across tumor cell membrane channels, inducing the largest harmful alteration in their cellular function.
Methods: Neuronal-like cells were used as a cell model and exposed for 6 h to electromagnetic fields at different frequencies (0, 50 Hz, 900 MHz) at the same intensity of 2 mT. The exposure system was represented by two Helmholtz coils driven by a power amplifier in current mode and an arbitrary function generator. FTIR spectroscopy was used to evaluate the results of the exposure.
Results: The results of this study showed that the Amide I vibration band increased in intensity with the increase of the frequency, leading us to assume that the displacement of the cell channels α-helices depends on the frequency of the applied electromagnetic fields.
Conclusion: This preliminary result leads us to plan future research aimed at searching for the natural frequencies of membrane channels in tumor cells using resonant electromagnetic fields in
This project focus on the molecular basis of a peculiar class of conformational diseases, called Serpinopathies, with a special emphasis to glycosylation, an important post-translational modification which rules the functional and pathological behaviour of the proteins responsible for the diseases. The authors exploited their expertise on protein biophysics and glyco-biochemistry to set up a long-term program for the studies on the role of glycosylation in the functional activity and pathological consequences of serpin proteins. An experimental work was accomplished to start the expression and production of two serpins, neuroserpin and C1-inhibitor, in a novel eukaryotic expression model. Further, the program was given a wider scope by consolidating a European network of researchers working on closely related issues.
The elucidation of three-dimensional structures of molecular machines that control cellular physiology is necessary for the understanding of the mechanisms of life and for the development of rational screening tests for pharmaceutical applications. Due to the large size of these biological entities and the high resolution which is sought, X-ray crystallographic structure determination is the method of choice. Obtaining crystals of biological complexes however remains difficult and is the bottleneck to this method. In this project, we have applied sophisticated crystallization strategies to a hitherto intractable problem: crystallising a molecular motor, namely the bacterial transcription termination factor Rho from Mycobacterium tuberculosis. Rho is a ring-shaped hexameric helicase targeting transcriptional complexes and R-loops, and regulating RNA metabolism in a variety of ways. The first crystals of M.tub. Rho have been obtained, which however should now be optimised to reach an X-ray diffraction resolution sufficient for full three-dimensional structure determination. In addition, we have developed a theoretical model describing the varying usefulness of ions at different positions in the Hofmeister series, according to thermodynamic properties of the crystallizing protein.
Maternal immune transfer is the most significant source of protection from early-life infection, but whether maternal transfer of immunity by nursing permanently alters offspring immunity is poorly understood. Here, we identify maternal immune imprinting of offspring nursed by mothers who had a pre-conception helminth infection. Nursing of pups by helminth-exposed mothers transferred protective cellular immunity to these offspring against helminth infection. Enhanced control of infection was not dependent on maternal antibody. Protection associated with systemic development of protective type 2 immunity in T helper 2 (TH2) impaired IL-4R−/− offspring. This maternally acquired immunity was maintained into maturity and required transfer (via nursing) to the offspring of maternally derived TH2-competent CD4 T cells. Our data therefore reveal that maternal exposure to a globally prevalent source of infection before pregnancy provides long-term nursing-acquired immune benefits to offspring mediated by maternally derived pathogen-experienced lymphocytes.
The purpose of the current study was green synthesis of ZnO-nanoparticles (NPs) from different tissues of Silybum marianum (L.) Gaernt. (i.e., seeds, wild plant, in vitro derived plantlets and callus cultures) followed by extensive characterization and evaluation of their biological potency. ZnO-NPs thus synthesized were subjected to characterization using standard techniques such as XRD, FTIR and SEM. Thermal stability of synthesized NPs was also evaluated using thermo-gravimetric analysis. Highly stable crystalline NPs with size ranging between 30.8 and 46.0 nm were obtained from different tissues of S. marianum. These NPs have revealed a wide range of biological applications showing antioxidant, moderate α-amylase inhibitor, antibacterial and cytotoxicpotencies. The highest antibacterial activity (20 0.98 mm) was shown by seed extract-mediated ZnO NPs against Staphylococcus aureus (ATCC-6538). Seed extract-mediated ZnO NPs also showed the most potent antioxidant activity (27.7 .9 gAAE/mg, 23.8 0.7 gAAE/mg and 12.7 1.9% total antioxidant capacity (TAC), total reducing power (TRP) and DPPH-free radical scavenging assay (FRSA), respectively). All of the synthesized ZnO NPs also showed cytotoxic activity against the hepato-cellular carcinoma (HepG2) human cells. Interestingly, these ZnO NPs were also highly biocompatible, as evidenced by the brine shrimp lethality and human red blood cells hemolytic assays. Among all of the NPs synthesized and used, the effect of seed extract-mediated NPs was found to be most promising for future applications.
Transactive Response DNA-Binding Protein-43 (TDP-43) is an RNA/DNA binding protein that forms phosphorylated and ubiquitinated aggregates in the cytoplasm of motor neurons in Amyotrophic Lateral Sclerosis (ALS), which is a hallmark of this disease. ALS is a neurodegenerative condition affecting the upper and lower motor neurons. Even though the aggregative property of TDP-43 is considered a cornerstone of ALS, there has been major controversy regarding the functional link between TDP-43 aggregates and cell death. In this review, we attempt to reconcile the current literature surrounding this debate by discussing the results and limitations of the published data relating TDP-43 aggregates to cytotoxicity, as well as therapeutic perspectives of TDP-43 aggregate clearance. We point out key data suggesting that the formation of TDP-43 aggregates and the capacity to self-template and propagate among cells as a “prion-like” protein, another pathological property of TDP-43 aggregates, are a significant cause of motor neuronal death. We discuss the disparities among the various studies, particularly with respect to the type of models and the different forms of TDP-43 utilized to evaluate cellular toxicity. We also examine how these disparities can interfere with the interpretation of the results pertaining to a direct toxic effect of TDP-43 aggregates. Furthermore, we present perspectives for improving models in order to better uncover the toxic role of aggregated TDP-43. Finally, we review the recent studies on the enhancement of the cellular clearance mechanisms of autophagy, the ubiquitin proteasome system, and endocytosis in an attempt to counteract TDP-43 aggregation-induced toxicity. Altogether, the data available so far encourage us to suggest that the cytoplasmic aggregation of TDP-43 is key for the neurodegeneration observed in motor neurons in ALS patients. The corresponding findings provide novel avenues toward early therapeutic interventions and clinical outcomes for ALS management.
The insula was for a long time considered as one of the most challenging areas of the brain. This is mainly related to its location, deep and medial to the frontoparietal, temporal, and fronto-orbital opercula. Another difficulty is the content of the lateral fossa, located between the insula and the opercula, which contains the trunks, stem, arteries, and cortical branches of the insular (M2) and opercular (M3) segments of the middle cerebral artery (MCA). Finally, the insula is surrounded by several white matter tracts and cortical structures having important functional roles, especially for language in the dominant hemisphere; the insula is indeed located between a dorsal phonological stream, centered by the arcuate fasciculus and lateral to the posterior insula, and a ventral semantic system, medial to the ventral aspect of the insula and centered by the inferior fronto-occipital fasciculus (IFOF). This chapter reviews some of these surgically relevant anatomical relationships.
Rhodnius prolixus has become a model for revealing the molecular bases of insect sensory biology due to the publication of its genome, its well characterized behavioural repertoire and the advent of NGS technologies. Gene expression modulation underlies behaviour-triggering processes at peripheral and central levels. Still, the regulation of sensory-related gene transcription in sensory organs is poorlyunderstood. Here we study the genetic bases of plasticity in antennal sensory function, using R. prolixus as an insect model. Antennal expression of neuromodulatory genes such as those coding for neuropeptides, neurohormones and their receptors was characterized by means of RNA-Seq. New nuclear receptor and takeout gene sequences were identified for this species, as well as those of enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines. We report a broad repertoire of neuromodulatory and endocrine genes expressed in antennae and suggest that they modulate sensory neuron function locally. Diverse neuropeptide-coding genes showed consistent expression in the antennae of all stages studied. Future studies should characterize the contribution of these modulatory components acting over antennal sensory processes to assess the relative contribution of peripheral and central regulatory systems on the plastic expression of insect behaviour.
This paper analyses the influence of the transducer bandwidth on the compression and the axial resolution of an ultrasound image. The distortion of an electrical signal visible in the final image is a major problem in ultrasonography. To solve this problem, the bit length in Golay-complementary sequences was elongated, narrowing the fractional bandwidth of the coded sequences. Therefore, more energy of the burst signal could be transferred through the ultrasound transducer. The experimental results obtained for transmission of the complementary Golay-coded sequences with two different bit lengths – one-cycle and two-cycles – have been compared, and the efficiency of the pulse compression and its influence on the axial resolution for two fractional bandwidths have been discussed. The results are presented for two transducers having a fractional bandwidth of 25% and 80% and operating at a 6-MHz frequency. The results obtained show that the elongation of the Golay single bit length (doubled in our case) compensate for the limited transducer bandwidth. 2D ultrasound images of a tissue-mimicking phantom are presented and demonstrate the benefits of the use of two-cycle bit length.
Cigarette smoke exposure is a leading cause of chronic obstructive pulmonary disease (COPD), a major health issue characterized by airway inflammation with fibrosis and emphysema. Here we demonstrate that acute exposure to cigarette smoke causes respiratory barrier damage with the release of self-dsDNA in mice. This triggers the DNA sensor cGAS (cyclic GMP-AMP synthase) and stimulator of interferon genes (STING), driving type I interferon (IFN I) dependent lung inflammation, which are attenuated in cGAS, STING or type I interferon receptor (IFNAR) deficient mice. Therefore, we demonstrate a critical role of self-dsDNA release and of the cGAS-STING-type I interferon pathway upon cigarette smoke-induced damage, which may lead to therapeutic targets in COPD.
ABSTRACT The combination of stem cell therapy with a supportive scaffold is a promising approach to improving tissue engineering. We aim producing novel material composites that may serve as artificial Extracellular Matrix (ECM). The natural ECM is composed of an organic (protein, polysaccharide) and inorganic (i.e. hydroxy-apatite) components that when combined with the cells form a tissue. ECM is an integral part of every tissue that besides providing the environment for cells to grow, it also improves tissue’s mechanical properties. It provides elasticity, flexibility and durability for the tissue. Tissue engineering approaches utilize artificial materials (biomaterials) as a substitute of natural ECM. The process of producing tissue scaffolds obtained from biodegradable polymers has become a very intensively researched area for the past several years. Most of the current work focuses on the design and preparation of scaffolds with use of various production technologies and different natural materials like chitosan, collagen, elastin and different synthetic ones, like polymer polycaprolactone (PCL), poly(lactic acid) (PLA), poly(ethylene oxide) (PEO). The objective of this study was to check the impact of the biomaterials on various cell types, and compare their growth pattern. Biodegradable PCL, and five of its hybrids: PCL+SHAP (SHAP, synthetic hydroxyapatite), PCL+NHAP (NHAP, natural hydroxyapatite), PCL+PLGA (PLGA, poly(lactide-co-glycolide), PCL+CaCO3, PCL+SHAP+NHAP+CaCO3 as well as one non degradable biomaterial: polyacrylonitryl (PAN), were tested. For the experiments four different cell types were used: human dermal skin fibroblasts, B16F10 (mouse melanoma cells), HSkMEC (Human Skin Microvascular Endothelial Cells) and HEPC-CB1 (Human Endothelial Progenitor Cells –Cord Blood 1). Impacts of the biomaterials on cells were assessed: 1) by measuring cytotoxic effect of the biomaterials liquid extracts and 2) by direct contact test. The ability of cells to attach to the biomaterials was tested as well as cells’ potential to growth and proliferate on the surface of the biomaterials. None of the tested biomaterials was cytotoxic towards the tested cells, making them a potential valuable raw ingredient for 3D scaffold development that would find its applications in tissue engineering. The differences in efficiency of cells attachment and proliferation between tested biomaterials and cells lines were observed. In addition, a stimulating effect of the biomaterials on cells growth was also detected.
The fluoroalkyl group plays an important role in the design of novel pharmacologically active agents since its introduction into organic compounds often leads to improved potency, stability and activity. Herein we wish to report an application of fluoroalkyl ketimines in decarboxylative Mannich reaction with a focus on the chemistry of unprotected NH-ketimines and heterocyclic ketimines. This study addresses the influence of the N-unprotected form of the ketimine function on the efficiency and selectivity of decarboxylative addition of malonic acid and its derivatives. The methods developed provide straightforward access to a range of valuable fluoroalkyl -amino acids and their derivatives promising as novel organofluorine building blocks.
Malaria is one of the most important parasitic infection in the world. Cerebral and pulmonary complications may occur after infection and are often lethal. Immune response plays an important role in controlling malaria infection; however, excessive inflammatory response can lead to severe disease. The present work aims to decipher the cellular and molecular events associated with brain and pulmonary pathology in response to blood stage Plasmodium berghei ANKA (PbA) infection. PbA infection in C57BL/6 wild-type (WT) mice induces experimental cerebral malaria (ECM), associated with strong pro-inflammatory response, brain damage, as well as paralysis, coma early death (around day 7 p.i.). Interestingly, IFNγ receptor deficient mice (IFNγR1-/-, C57BL/6 background) are resistant to ECM and died at a later time-point, due to the hyperparasitaemia and severe anemia. Here, we addressed the impact of IFNγR1 deficiency in the development of pulmonary damage during PbA infection. At day 7 post-infection, the broncho-alveolar lavage (BAL) allowed the quantitative analysis of total cells and proteins in the broncho-alveolar space of the animals. In addition, histological analysis and Western blot were performed to compare the cerebral and pulmonary compartments. As compared to PbA-infected WT mice, the histological sections confirmed a less intense accumulation of leukocytes as well as an absence of hemorrhages in the brains of IFNγR1-/- mice. In addition, the quantification of pro-apoptotic proteins (Granzyme B and cleaved caspase-3) in olfactory bulbs showed lower levels in IFNγR1-/- mice. While IFNγR1 deficient mice were fully resistant to brain pathology, those mice were partially protected for pulmonary damage, as observed by the levels of Granzyme B and cleaved caspase-3 in the lung parenchyma, leukocyte number in the broncho-alveolar space and pulmonary edema.
Lung inflammation induced by silica impairs host control of tuberculosis, yet the underlying mechanism remains unclear. Here, we show that silica-driven exacerbation of M. tuberculosis infection associates with raised type 2 immunity. Silica increases pulmonary Th2 cell and M2 macrophage responses, while reducing type 1 immunity after M. tuberculosis infection. Silica induces lung damage that prompts extracellular self-DNA release and activates STING. This STING priming potentiates M. tuberculosis DNA sensing by and activation of cGAS/STING, which triggers enhanced type I interferon (IFNI) response and type 2 immunity. cGAS-, STING-, and IFNAR-deficient mice are resistant to silica-induced exacerbation of M. tuberculosis infection. Thus, silica-induced self-DNA primes the host response to M. tuberculosis-derived nucleic acids, which increases type 2 immunity while reducing type 1 immunity, crucial for controlling M. tuberculosis infection. These data show how cGAS/STING pathway activation, at the crossroads of sterile inflammation and infection, may affect the host response to pathogens such as M. tuberculosis.
Soil-transmitted helminths and Mycobacterium tuberculosis frequently coincide geographically and it is hypothesized that gastrointestinal helminth infection may exacerbate tuberculosis (TB) disease by suppression of Th1 and Th17 responses. However, few studies have focused on latent TB infection (LTBI), which predominates globally. We performed a large observational study of healthy adults migrating from Nepal to the UK (n = 645). Individuals were screened for LTBI and gastrointestinal parasite infections. A significant negative association between hookworm and LTBI-positivity was seen (OR = 0.221; p = 0.039). Hookworm infection treatment did not affect LTBI conversions. Blood from individuals with hookworm had a significantly greater ability to control virulent mycobacterial growth in vitro than from those without, which was lost following hookworm treatment. There was a significant negative relationship between mycobacterial growth and eosinophil counts. Eosinophil-associated differential gene expression characterized the whole blood transcriptome of hookworm infection and correlated with improved mycobacterial control. These data provide a potential alternative explanation for the reduced prevalence of LTBI among individuals with hookworm infection, and possibly an anti-mycobacterial role for helminth-induced eosinophils.
Infection with parasitic helminths can imprint the immune system to modulate bystander inflammatory processes. Bystander or virtual memory CD8+ T cells (TVM) are non-conventional T cells displaying memory properties that can be generated through responsiveness to interleukin (IL)-4. However, it is not clear if helminth-induced type 2 immunity functionally affects the TVM compartment. Here, we show that helminths expand CD44hiCD62LhiCXCR3hiCD49dlo TVM cells through direct IL-4 signaling in CD8+ T cells. Importantly, helminth-mediated conditioning of TVM cells provided enhanced control of acute respiratory infection with the murid gammaherpesvirus 4 (MuHV-4). This enhanced control of MuHV-4 infection could further be explained by an increase in antigen-specific CD8+ T cell effector responses in the lung and was directly dependent on IL-4 signaling. These results demonstrate that IL-4 during helminth infection can non-specifically condition CD8+ T cells, leading to a subsequently raised antigen-specific CD8+ T cell activation that enhances control of viral infection.
Persistent infection with human papillomavirus (HPV) is responsible for nearly all new cervical cancer cases worldwide. In low- and middle-income countries (LMIC), infection with helminths has been linked to increased HPV prevalence. As the incidence of cervical cancer rises in helminth endemic regions, it is critical to understand the interaction between exposure to helminths and the progression of cervical cancer. Here we make use of several cervical cancer cell lines to demonstrate that exposure to antigens from the hookworm N. brasiliensis significantly reduces cervical cancer cell migration and global expression of vimentin and N-cadherin. Importantly, N. brasiliensis antigen significantly reduced expression of cell-surface vimentin, while decreasing HPV type 16 (HPV16) pseudovirion internalization. In vivo infection with N. brasiliensis significantly reduced vimentin expression within the female genital tract, confirming the relevance of these in vitro findings. Together, these findings demonstrate that infection with the hookworm-like parasite N. brasiliensis can systemically alter genital tract mesenchymal markers in a way that may impair cervical cancer cell progression. These findings reveal a possible late-stage treatment for reducing cervical cancer progression using helminth antigens.
Future HIV vaccines are expected to induce effective Th1 cell-mediated and Env-specific antibody responses that are necessary to offer protective immunity to HIV infection. However, HIV infections are highly prevalent in helminth endemic areas. Helminth infections induce polarised Th2 responses that may impair HIV vaccine-generated Th1 responses. In this study, we tested if Schistosoma mansoni (Sm) infection altered immune responses to SAAVI candidate HIV vaccines (DNA and MVA) and an HIV-1 gp140 Env protein vaccine (gp140) and whether parasite elimination by chemotherapy or the presence of Sm eggs (SmE) in the absence of active infection influenced the immunogenicity of these vaccines. In addition, we evaluated helminth-associated pathology in DNA and MVA vaccination groups. Mice were chronically infected with Sm and vaccinated with DNA+MVA in a prime+boost combination or MVA+gp140 in concurrent combination regimens. Some Sm-infected mice were treated with praziquantel (PZQ) prior to vaccinations. Other mice were inoculated with SmE before receiving vaccinations. Unvaccinated mice without Sm infection or SmE inoculation served as controls. HIV responses were evaluated in the blood and spleen while Smassociated pathology was evaluated in the livers. Sm-infected mice had significantly lower magnitudes of HIV-specific cellular responses after vaccination with DNA+MVA or MVA
Background: It is unclear whether antibodies can prevent Mycobacterium tuberculosis (Mtb) infection. In this study, we examined the relationship between total plasma IgG levels, IgG elicited by childhood vaccines and soil-transmitted helminths, and Mtb infection prevalence, defined by positive QuantiFERON (QFT) test. Methods: We studied 100 Mtb uninfected infants, aged 4–6 months. Ten infants (10%) converted to positive QFT test (QFT+) within 2 years of follow-up for Mtb infection. Antibody responses in plasma samples acquired at baseline and tuberculosis investigation were analyzed by enzyme-linked immunosorbent assay and ImmunoCAP® assay. Results: QFT− infants displayed a significant increase in total IgG titers when re-tested, compared to IgG titers at baseline, which was not observed in QFT+ infants. Bacille Calmette-Guérin (BCG) vaccine-specific IgG2 and live-attenuated measles vaccine-specific IgG were raised in QFT− infants, and infants who acquired an Mtb infection did not appear to launch a BCG-specific IgG2 response. IgG titers against the endemic helminth Ascaris lumbricoides increased from baseline to QFT re-testing in all infants. Conclusion: These data show raised IgG associates with a QFT-status. Importantly, this effect was also associated with a trend showing raised IgG titers to BCG and measles vaccine. Our data suggest a possible protective association between raised antibody titers and acquisition of Mtb infection, potentially mediated by exposure to antigens both related and unrelated to Mtb.
Background Early life microbiota is an important determinant of immune and metabolic development and may have lasting consequences. The maternal gut microbiota during pregnancy or breastfeeding is important for defining infant gut microbiota. We hypothesized that maternal gut microbiota during pregnancy and breastfeeding is a critical determinant of infant immunity. To test this, pregnant BALB/c dams were fed vancomycin for 5 days prior to delivery (gestation; Mg), 14 days postpartum during nursing (Mn), or during gestation and nursing (Mgn), or no vancomycin (Mc). We analyzed adaptive immunity and gut microbiota in dams and pups at various times after delivery. Results In addition to direct alterations to maternal gut microbial composition, pup gut microbiota displayed lower α-diversity and distinct community clusters according to timing of maternal vancomycin. Vancomycin was undetectable in maternal and offspring sera, therefore the observed changes in the microbiota of stomach contents (as a proxy for breastmilk) and pup gut signify an indirect mechanism through which maternal intestinal microbiota influences extra-intestinal and neonatal commensal colonization. These effects on microbiota influenced both maternal and offspring immunity. Maternal immunity was altered, as demonstrated by significantly higher levels of both total IgG and IgM in Mgn and Mn breastmilk when compared to Mc. In pups, lymphocyte numbers in the spleens of Pg and Pn were significantly increased compared to Pc. This increase in cellularity was in part attributable to elevated numbers of both CD4+ T cells and B cells, most notable Follicular B cells. Conclusion Our results indicate that perturbations to maternal gut microbiota dictate neonatal adaptive immunity.
We detected Emergomyces africanus, a thermally dimorphic fungus that causes an HIV-associated systemic mycosis, by PCR in 18 (30%) of 60 soil samples from a wide range of habitats in South Africa. Direct and indirect culture techniques were unsuccessful. Experimental intraperitoneal inoculation of conidia induced murine disease.
Background: Animal and human studies indicate that definitive host helminth infections may confer protection from allergies. However, zoonotic helminths, such as Toxocara species (spp.), have been associated with increased allergies. Objective: We describe the prevalence of Toxocara spp. and Ascaris spp. seropositivity and associations with allergic diseases and sensitization, in 2 generations in Bergen, Norway. Methods: Serum levels of total IgG4, anti-Toxocara spp. IgG4 and Ascaris spp. IgG4 were established by ELISA in 2 cohorts: parents born 1945-1972 (n = 171) and their offspring born 1969-2003 (n = 264). Allergic outcomes and covariates were recorded through interviews and clinical examinations including serum IgEs and skin prick tests. Results: Anti-Ascaris spp. IgG4 was detected in 29.2% of parents and 10.3% of offspring, and anti-Toxocara spp. IgG4 in 17.5% and 8.0% of parents and offspring, respectively. Among offspring, anti-Toxocara spp. IgG4 was associated with pet keeping before age 15 (OR = 6.15; 95% CI = 1.37-27.5) and increasing BMI (1.16 [1.06-1.25] per kg/m2). Toxocara spp. seropositivity was associated with wheeze (2.97[1.45- 7.76]), hayfever (4.03[1.63-9.95]), eczema (2.89[1.08-7.76]) and cat sensitization (5.65[1.92-16.6]) among offspring, but was not associated with allergic outcomes among parents. Adjustment for childhood or current pet keeping did not alter associations with allergies. Parental Toxocara spp. seropositivity was associated with increased offspring allergies following a sex-specific pattern. Conclusions & Clinical Relevance: Zoonotic helminth exposure in Norway was less frequent in offspring than parents; however, Toxocara spp. seropositivity was associated with increased risk of allergic manifestations in the offspring generation, but not among parents. Changes in response to helminth exposure may provide insights into the increase in allergy incidence in affluent countries.
When the lips of the lateral fissure are separated from each other, a new group of sulci and gyri appear. They are arrayed together in the form of an island, which is the reason why the German anatomist, Johann Christian Reil, named them “the insular lobe”. Bordered by the limiting sulci, its general form resembles that of an oblique pyramid with a triangular base and low height. Although some anatomical variation exists, the insula presents a systematizable internal organization and well-defined anatomical relationships with deep and superficial cerebral structures, such as the extreme capsule and the cerebral opercula. In this chapter we review concepts of the insular morphology that are important to the fields of neurosurgery and neuroimaging.
Although the middle longitudinal fasciculus (MdLF) is not part of the insular lobe, it penetrates the temporal operculum, which is manipulated or partially removed during surgical approaches to the insula. We present a comprehensive description of that fascicle and its anatomical relationships with neighboring structures that have been described in previous chapters. It has been hypothesized that MdLF plays a role in attention and language processing; however studies with peroperative subcortical electrostimulation or temporal lobectomies did not demonstrate permanent language deficits following resection of its anterior segment. The MdLF has close relationships to adjacent bundles, such as the arcuate fasciculus and the inferior fronto-occipital fasciculus that are required to be recognized and differentiated for adequate interpretation of tractography images and surgical planning.
Aim of the study: To assess a program combining virtual reality (VR) games and proprioceptive neuromuscular facilitation (PNF), and to compare it to the standalone techniques in stroke survivors. Methods: A randomized controlled clinical trial. Forty-eight participants were recruited in the outpatient clinic of a University Hospital in Salvador, Brazil. They were randomly assigned to three groups (n=16 each): PNF, VR, and PNF/VR. Participants attended twice-weekly fifty-minute sessions over a two-month period. The PNF/VR group performed both PNF and virtual reality exercises employing Nintendo Wii electronic games. Motor performance was assessed before and immediately after the treatment using the Fugl-Meyer Assessment scale. Results: Improvement in the mean scores was observed after treatment independent of the allocation group with significant intra-group changes: 14.5, 10.5, and 10.4 for PNF, VR and PNF/VR, respectively. Score changes were also observed in the analyses of specific sections as follows: (1) A significant improvement in the passive movement and pain score was observed in the PNF and PNF/VR groups. (2) The same was observed for the motor function of the upper limb in all groups, for the motor function of the lower limb in the VR group and for balance in the PNF and PNF/VR groups. Conclusion: The use of a program combining virtual rehabilitation and PNF presented results that were comparable to those obtained with the isolated techniques
Objective To present an adaptation of the anaglyph photography technique to be used with radiological images from computed tomography angiograms, enabling stereoscopic visualization of a patient's individual abnormal vascular anatomy for teaching, case discussion, or surgical planning purposes. Methods Traditional anaglyph procedures with actual objects yield 2 independent photographs, simulating the image perceived by each eye. Production of anaglyphs from angiograms involve 3 basic procedures: volume rendering, image capture, and image fusion. Volume renderings were reconstructed using a free, open-source DICOM (Digital Imaging and Communications in Medicine) reader. Subsequently, the virtual object was positioned to mimic the operator's angle of view, and different perspectives of the reconstructed volume could be obtained through exclusively horizontal rotation. The 2 images were then fused after their color composition was modified so that each eye would perceive only 1 image when using anaglyph glasses. Results Forty-three angiograms were reviewed for the purpose of this study and a total of 6 examinations were selected for illustration of the technique. Stereoscopic display was possible for all of them and in the 3 types of support tested: computer monitor, tablet, and smartphone screens. Conclusions Anaglyph display of computed tomography angiograms is an effective and low-cost alternative for the stereoscopic visualization of a patient's individual intracranial vascular anatomy.
INTRODUCTION:Although the role of trunk exercises in the chronic phase of stroke is acknowledged, the addition of specific inpatient training in the subacute stage is a matter of debate and varies among centers. Recent new evidence suggests the question should be revisited. OBJECTIVE:To assess the impact of the addition of specific trunk training to inpatient rehabilitation protocols after a recent stroke. METHODS:A systematic review was performed assessing the impact of inpatient trunk training. The search was performed in LILACS, SciELO, PEDro, Cochrane, and NCBI PubMed databases for clinical trials published up to December 31st, 2017. The initial bibliographic research identified 3202 articles. After analyzing the titles, 19 abstracts were selected for detailed analysis. After application of the eligibility criteria, the final selection included nine studies. Outcome measurements from the same evaluation instruments were submitted to a meta-analysis to improve homogeneity (7 studies). RESULTS:All patients in the included studies were recruited less than three months after a stroke. Seven studies assessed trunk control using the Trunk Impairment Scale (TIS). There was a significant improvement in trunk control with a pooled increase in TIS score of 3.3 points from the baseline (CI95:2.54–4.06, p < 0.0001). Three studies assessed balance using the Brunel Balance Assessment (BBA) scale. There was also a significant improvement in balance with a pooled increase in BBA score of 2.7 points (CI95:1.5–4.03, p < 0.0001). The Berg Balance Scale was used for balance assessment in three studies. The meta-analysis of their results showed a pooled increase of 13.2 points (CI95:9.49–16.84, p < 0.0001). Weight transfer was evaluated in four studies using different methods. The addition of inpatient trunk exercises was associated with an improvement in the ability to transfer the trunk laterally in three studies. CONCLUSION:The introduction of trunk-based inpatient training protocols brings short-term benefits in trunk performance and balance in stroke patients.
Glioblastoma Multiforme (GBM) invasiveness renders complete surgical resection impossible and highly invasive Glioblastoma Initiating Cells (GICs) are responsible for tumour recurrence. Their dissemination occurs along pre-existing fibrillary brain structures comprising the aligned myelinated fibres of the corpus callosum (CC) and the laminin (LN)-rich basal lamina of blood vessels. The extracellular matrix (ECM) of these environments regulates GIC migration, but the underlying mechanisms remain largely unknown. In order to recapitulate the composition and the topographic properties of the cerebral ECM in the migration of GICs, we have set up a new aligned polyacrylonitrile (PAN)-derived nanofiber (NF) scaffold. This system is suitable for drug screening as well as discrimination of the migration potential of different glioblastoma stem cells. Functionalisation with LN increases the spatial anisotropy of migration and modulates its mode from collective to single cell migration. Mechanistically, equally similar to what has been observed for mesenchyma I migration of GBM in vivo, is the upregulation of galectin-3 and integrin-beta 1 in Gli4 cells migrating on our NF scaffold. Downregulation of Calpain-2 in GICs migrating in vivo along the CC and in vitro on LN-coated NF underlines a difference in the turnover of focal adhesion (FA) molecules between single-cell and collective types of migration.
Sensory processes represent an information gathering interface between animals and their surrounding world. Therefore, they serve to scan the environment for resources and threats. The behavior of kissing bugs has been studied to aid their control because they transmit Chagas disease to humans. Besides, a few triatomines represent important insect models since Wigglesworth times. These hematophagous insects rely on different sensory systems to scan their environment for blood-sources, mating partners and hiding places. The study of the molecular bases of sensory processes has undergone a dramatic progress due the advent of new technologies allowing mass-sequencing of genes. Here we focus on reviewing the fundamental knowledge gathered to date about the molecular bases of kissing bug sensory processes.
Triatomine bugs are considered nocturnal insects that feed on the blood of vertebrates and remain hidden inside narrow shelters during daylight hours. Nevertheless, it is not clear whether these insects become active and leave their shelters on a daily basis, less frequently or, even fortnightly. Activity patterns were studied in Rhodnius prolixus Stål, 1859 (Hemiptera: Triatominae) associated with shelters to evaluate whether the decision to leave a shelter depends on bug starvation and the presence of host odours. Experiments were conducted with groups of 5th instar nymphs released in an experimental arena offering an artificial shelter consisting of a piece of corrugated cardboard positioned in its centre. Results indicate that host odours promoted a significant increase in shelter related activity, i.e. shelter-leaving or entering movements, and also in bug locomotion. This increase could only be observed with bugs starved for 30 or 60 days, but not for 21 days. Most R. prolixus nymphs that left shelters and engaged in locomotory activity were starved and in the presence of host odours. Even though R. prolixus is mostly considered a very active and “aggressive” triatomine, our results contradict this perspective and suggest that its main strategy regarding hosts is to wait and carefully evaluate feeding chances before becoming exposed. This behavioural strategy might have arisen through their evolution in palm trees in association with a diverse fauna that may impose predation risks.
The triatomine bug Rhodnius prolixus is a main vector of Chagas disease, which affects several million people in Latin-America. These nocturnal insects spend most of their locomotory activity during the first hours of the scotophase searching for suitable hosts. In this study we used multivariate analysis to characterize spontaneous locomotory activity profiles presented by 5th instar nymphs. In addition, we investigated whether sex and the expression of the foraging (Rpfor) gene could modulate this behavioral trait. Hierarchical Clustering and Redundancy Analyses detected individuals with distinct locomotory profiles. In addition to a great variation in locomotory intensity, we found that a proportion of nymphs walked during unusual time intervals. Locomotory activity profiles were mostly affected by the cumulative activity expressed by the nymphs. These effects promoted by cumulative activity were in turn influenced by nymph sex. Sex and the Rpfor expression had a significant influence on the profiles, as well as in the levels of total activity. In conclusion, the locomotory profiles evinced by the multivariate analyses suggest the co-existence of different foraging strategies in bugs. Additionally, we report sex-specific effects on the locomotion patterns of 5th instar R. prolixus, which are apparently modulated by the differential expression of the Rpfor gene.
Background The triatomine bug Rhodnius prolixus Stål, 1859 (Heteroptera: Reduviidae) is the primary vector of Chagas disease in Colombia and Venezuela. An important step in controlling Chagas disease is monitoring the growth and spread of bug populations to inform effective management. Such monitoring could be carried out using pheromone traps. To develop effective pheromone traps, it is vital to understand the pheromone chemistry of R. prolixus. Previous studies have found that female R. prolixus metasternal gland secretions induce males to: leave shelters, take off, orientate during walking, aggregate around mating pairs, and mate. This study aims to identify a synthetic blend of female metasternal gland compounds that could be used to attract R. prolixus. Results We investigated the electrophysiological activity of the ten most abundant compounds in female R. prolixus metasternal glands using single sensillum recordings. In total we obtained 60 recordings from basiconic sensilla in male R. prolixus. In 31 of these recordings, responses to individual compounds were observed. Each of the ten tested compounds elicited neuron responses in a minimum of eight recordings. Having confirmed their electrophysiological activity, we tested these ten compounds by presenting them to male Rhodnius prolixus in a “T” olfactometer. Male bugs showed a significant preference for the blend of metasternal gland compounds compared to the clean air control. Conclusions A simple blend of ten compounds found in female R. prolixus metasternal glands is attractive to conspecific males. All compounds in the blend are either commercially available at low cost, or easily synthetically prepared from simple precursors. We hope that this blend will be evaluated as a lure for pheromone traps in field bioassays.
Triatomines are insect vectors of Trypanosoma cruzi¸ the etiological agent of Chagas disease. Several species belonging to the genus Rhodnius (Hemiptera: Reduviidae) have been reported inhabiting domestic and peridomestic environments in different regions of Latin America. However, behavioral and sensory ecology aspects related to their use of shelters have been poorly studied. The objective of the present study was to characterize how bug density, illumination and thigmotactic information affect the use of shelters by three species belonging to the Rhodnius prolixus species complex. We evaluated whether exposure to different insect densities affects the proportion of R. prolixus, Rhodnius robustus and Rhodnius neglectus that choose to stay inside a refuge. Besides, we evaluated whether absence of an illumination regime affects their tendency to hide in shelters. Our results showed that the proportion of individuals that remained outside the shelter increased with rising insect densities. Nevertheless, while R. prolixus only reacted by augmenting this proportion with the highest density tested, the other species showed significant increases already at lower densities. On the other hand, a significantly higher number of R. robustus stayed outside the shelter in the absence of a light cycle, while no change was induced for the other species. Thus, this study determined species-specific profiles of refuge exploitation defined by factors such as thigmotaxis and negative phototaxis. The differences observed among these Rhodnius species may impact their house colonization abilities, which seem to be critically affected by bug hiding performance during health service detection processes.
The ability to exclude harmful factors from a hydrogel microbead is important for the degree of protection the beads offers to what is encapsulated within. The permeability of alginate microbeads, prepared by water-in-oil emulsification, was investigated by their ability to exclude FITC-labelled protein probes. The influence of alginate concentration, calcium concentration and method of addition, and salt content of the environment was investigated. The permeability was also compared to the permeability of beads made by the traditional method of dripping an alginate solution into a CaCl2 solution. Beads produced with low amounts of CaCl2 show a significant degree of swelling and are therefore very permeable (C/C0 (BSA) = 0.62, where C is the final concentration of BSA-FITC in the bead, and C0 the concentration of BSA-FITC in the continuous phase). With additional calcium, either by adding more calcium crystals after the emulsification step or by washing with a CaCl2 solution, beads swell less and are less permeable (C/C0 (BSA) = 0.13 and 0.12). Beads made by dripping are very permeable (C/C0 (BSA) ∼ 0.60). Because in this process the droplets of alginate are not constrained by a water-oil boundary, the beads can swell during gelation. The salt concentration in the continuous phase influences the strength of the electrostatic repulsion between the probes and the alginate network and hence affects the permeation of the probes into the beads. In the absence of salt, even FITC (389Da) is mostly excluded from the interior of the beads (C/C0 (FITC) ∼ 0.09).
An antibubble is a gas bubble containing a liquid droplet core. Both the droplet and the gas bubble are typically surrounded by stabilising shells. Owing to electrostatic forces exerted by these shells, core droplets of micrometer diameter do not readily coalesce with the surrounding liquid medium. Owing to the incompressibility of the liquid droplet core, antibubbles will oscillate asymmetrically, i.e., the radial excursion amplitude of the surface is greater during expansion than during contraction, when subjected to diagnostic ultrasound. Consequently, the harmonic content of the ultrasound signal radiated from antibubbles must be higher than that from identical bubbles without a liquid core. Whether the harmonic signal component generated by physical antibubbles is higher than the harmonic component of identical bubbles without a core has been studied here. We subjected prefabricated antibubbles and identical bubbles without core droplets to 1-MHz ultrasound and to a commercial ultrasound system, and recorded the spectra with a broadband transducer oriented perpendicularly to the transmitter. Normalised by the acoustic response from the medium, the antibubble signal shows stronger higher harmonics than the reference signal, and negligible fundamental response. In conclusion, antibubbles are suitable candidates for harmonic imaging. The generation of higher harmonics without fundamental has been attributed to asymmetric antibubble expansion.
Microbubble-based ultrasound contrast agents are used in clinical settings to enhance backscattered ultrasound signals from blood during perfusion and blood flow measurements. The dynamics of microbubbles contained in ultrasound contrast agents are typically studied with a high-speed camera attached to a microscope. Such microbubbles, with resting diameters between 1 µm and 7 µm, are considered in optical focus if the bubble centers are in the focal plane of the objective lens. Nonetheless, when a three-dimensional object, a stack of infinitely thin two-dimensional layers, is imaged through a microscope, the image formed onto the charge coupled device element consists of contributions from all layers. If a bubble is larger than the depth of focus, the part of the bubble above the focal plane influences the image formation and therefore the bubble size measured. If a bubble is of a size in the order of the wavelengths of the light used, the system resolution and the segmentation method influence the bubble size measured. In this study, the projections of three dimensional microbubbles (hollow spheres) were computed with an ideal, weighted three-dimensional point spread function to find out under which circumstances the optical image formation leads to a significant deviation in measurement of the actual size. The artificial images were subjected to segmentation techniques for objectively comparing original microbubble sizes with measured microbubble sizes. Results showed that a systematic error was observed for objects in focus with radius ≤ 1.65µm. Also it was concluded that even though a three-dimensional object is in focus, there is discrepancy of up to 0.66% in size measurement. In addition, size measurement of an object for the same shift above and below focus could differ by up to 3.6%. Moreover, defocusing above 25% severely deviates size measurements while defocusing up to 90% could result in mean percentage error of up to 67.96.
Adipose tissue is a promising source of mesenchymal stem cells. Their potential to differentiate and regenerate other types of tissues may be affected by several factors. This may be due to in vitro cell-culture conditions, especially the supplementation with antibiotics. The aim of our study was to evaluate the effects of a penicillin-streptomycin mixture (PS), amphotericin B (AmB), a complex of AmB with copper (II) ions (AmB-Cu2+) and various combinations of these antibiotics on the proliferation and differentiation of adipose-derived stem cells in vitro. Normal human adipose-derived stem cells (ADSC, Lonza) were routinely maintained in a Dulbecco’s Modified Eagle Medium (DMEM) that was either supplemented with selected antibiotics or without antibiotics. The ADSC that were used for the experiment were at the second passage. The effect of antibiotics on proliferation was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and sulforhodamine-B (SRB) tests. Differentiation was evaluated based on Alizarin Red staining, Oil Red O staining and determination of the expression of ADSC, osteoblast and adipocyte markers by real-time RT-qPCR. The obtained results indicate that the influence of antibiotics on adipose-derived stem cells depends on the duration of exposure and on the combination of applied compounds. We show that antibiotics alter the proliferation of cells and also promote natural osteogenesis, and adipogenesis, and that this effect is also noticeable in stimulated osteogenesis.
Group 2 innate lymphoid cell (ILC2s) responses drive type 2 immunity against helminths and are initiated by host alarmin release. Here we show that in addition to signature type 2 cytokines ILC2 also synthesise and release acetylcholine (ACh). ILC2 ACh synthesis (defined by choline acetyltransferase (ChAT) expression) following Nb or Alternaria challenge revealed pronounced ACh synthesis in ILC2 when compared to other immune cell populations. In vivo alarmin cytokine challenges selectively induced this ILC2 ACh responses. Nippostrongylus brasiliensis infection of RORCreChATLoxP mice (which have a targeted disruption of the ILC2 ACh response) resulted in higher intestinal helminth burdens than in control mice. This impaired control of infection associated with reduced ILC2 and CD4 IL-13 production. Adoptive transfer of RORCreChATLoxP ILC2s into RAG2-/-IL-2rg-/- resulted in subsequent infection having a higher intestinal burden than in ChATloxp recipeints. These data identify ILC2-derived ACh as a novel axis required for optimal type 2 immunity.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has no diagnostic marker, prognosis, nor an effective treatment. Numerous physiopathological mechanisms have been described for this disease, such as glutamatergic excitotoxicity, oxidative stress, and the accumulation of protein aggregates in cells of the central nervous system, in particular the aggregation of cytoplasmic TDP-43.Our aim was targeting the protein aggregates containing TDP-43 through fragments of antibodies synthesized by the cell, termed intrabodies. In order to determine the most relevant criteria to test the protective effects of the intrabodies, we searched for different toxicity markers associated with TDP-43aggregates. During the fellowship, the fellow participated of 2 publications of the host laboratory in this field. Besides, at the end of the fellowship, the host Scientist and the Le Studium fellow organized a conference about iPS cells, a powerful tool to model in vitro neurodegenerative diseases such as ALS. In addition, the fellow generated preliminary results showing that TDP-43 overexpression in HEK 293 cells does not affect mitochondrial respiration, but causes an increase in cytoplasmic calcium levels, while impairs the mitochondrial capacity to buffer the excessive cytoplasmic calcium. Moreover, preliminary patch clamp data showed alterations in spontaneous currents in primary hippocampal and motor neurons overexpressing TDP-43. If these results are further confirmed, calcium signaling and spontaneous currents could be used as parameters to measure the efficacy of anti-TDP-43 intrabodies.
Insects vectoring human disease, like mosquitoes and kissing-bugs, endure a high risk of predation related to their life histories. Therefore, insect vectors are expected to have a finely adapted behavioral repertoire to survive in the context of their close association to vertebrate hosts. The study of molecular bases of their perception of the environment and their behavior, is relevant to understand the evolution of hematophagy as well as to promote the discovery of new targets of opportunity for developing rational control methods. Our long-lasting scientific collaboration has been dedicated to these tasks and the support of the Le Studium Foundation has been instrumental to further promote its development. We report here a series of studies that have been completed during the stay in the region Centre. Kissing-bugs are nocturnal insects that spend daylight hours hidden inside narrow shelters. Therefore, comprehending shelter choice, as well as the cues that trigger foraging decisions seems essential in order to predict bug distribution and activity precisely. We have focussed on Rhodnius prolixus, one of the two main vectors of Chagas disease in the Americas, and the way they use shelters. As an outcome of these investigations, three scientific papers have been published to report factors affecting shelter choice by bugs, the lack of a chemical marking system in bugs of this genus and the key role that host odours play in promoting bug foraging outside shelters. In parallel, we have described what seem to be diverging locomotory profiles in these bugs suggesting that foraging strategies can vary from “sitter” to “rover” individuals. As a third topic, we have developed a synthetic blend of compounds imitating the effects of the sexual pheromone attracting males to R. prolixus females. In a fourth topic we have uncovered what appears to be a local modulatory system present in the antennae of insects including the synthesis of transcripts for neuropeptides, GPCRs and nuclear receptors. Finally, we have revised the molecular bases of sensory processes in triatomine bugs vectors of Chagas disease in a review publication.
Although cortical elements of the limbic system are quite well defined, the underlying white matter pathways are not well detailed. This project aimed to better describe white matter tracts of the limbic system using both fiber dissection, and in and ex vivo Diffusion Weighted Imaging (DWI) techniques. In vivo data (from DWI and neuropsychological evaluations) were obtained from healthy subjects aged 82 and over previously enrolled in the FIBRATLAS project funded by the French Research Agency and run in the host laboratory. Correlations between neuropsychological and white matter characteristics on DWI were examined in this group to infer function of the limbic white matter tracts. Ex vivo data from the FIBRATLAS project database and from the Tours Body Donation Program were examined. The brains were extracted and used to study the anatomy of the limbic white matter tracts employing both DWI and fiber dissection according to a variant of the Klingler’s method.
Herbal plants accumulate large amounts of phenolics and pentacyclic triterpenes. The present research project deals with the in vitro culture induction from stem and leaf explants of several medicinal plant species of Centre-Val de Loire under various plant growth regulators (PGRs) for the production of antioxidant and anti-ageing compounds. Among all the tested PGRs, auxins and cytokinins used alone or in combination induced callogenesis in stem/leaf-derived explants. Callus culture displayed feasible total phenolic content and antioxidant activity under optimum hormonal combination. HPLC analysis revealed the presence of plectranthoic acid, oleanolic acid, betulinic acid, caffeic acid and rosmarinic acid. Complete antioxidant and anti-aging potential of extracts with very contrasting phytochemical profiles were investigated. Correlation analyses revealed rosmarinic acid as the main contributor for antioxidant activity and anti-aging hyaluronidase, advance glycation end-products inhibition and SIRT1 activation, whereas, pentacyclic triterpenoids were correlated with elastase, collagenase and tyrosinase inhibition. Altogether, these results clearly evidenced the great valorization potential of herbal plants from CVL for the production of antioxidant and anti-aging bioactive extracts for cosmetic applications.
Evidence exists that the gonadotropins LH and FSH can substitute to each other under certain circumstances, in addition to the fact that they can act together in granulosa cells. The aim of this study is to investigate how the two human gonadotropins influence each other in granulosa cells expressing both receptors, or by co-culturing cells expressing either the LHCGR or the FSHR (as a model granulosa/theca interaction). Plasmids encoding the c-myc-tagged-LHCGR and the FLAG-tagged FSHR under the control of an inducible coumermycin-responsive or doxycycline-responsive promoter, respectively were produced. These plasmids were used to permanently transfect human granulosa cell-derived KGN cells and HEK293 cells. The following cell lines were obtained and partially characterized: #1 c-myc-tagged-LHCGR-KGN; #2 FLAG-tagged FSHR_HEK293; #3 FLAG-tagged FSHR-KGN; #4 Double, c-myc-tagged-LHCGR and FLAG-tagged FSHR-KGN. After induction of receptor expression, the cell lines #1 and #2 and #3 responded to hCG and FSH stimulation, respectively by producing cAMP. Receptor expression was demonstrated by RT-PCR and flow cytometry. The characterization of the cell line #4 is ongoing. These cell lines are now available for the study of cell signaling and steroid synthesis, as well as in silico modeling, to gain insight into the dynamics of the intertwined cell response to FSH and LH in granulosa cells. These experiments will continue in parallel in both laboratories involved. Our cell lines represent new, very valuable instruments for the study of molecular pharmacology of FSH and LH, in order to improve infertility treatment, (multi)follicular growth for assisted reproduction, ovulation and spermatogenesis.
Infections with parasitic helminths expose serious health threats to humans and animals alike. Prevention of disease is dependent on the effective treatment using anthelmintics. Unfortunately, anthelmintic resistance (AR) has evolved in many helminth species during the past decades and meanwhile poses a major constraint to established worm control approaches. This project aimed to improve our understanding of the molecular mechanisms by which helminths, particularly the potentially deadly horse parasite Parascaris sp., become capable of withstanding drug treatment. To this end, Parascaris P-glycoproteins (Pgp), belonging to an important group of mediators of anthelmintic resistance, were introduced into the model organism Caenorhabditis elegans using the CRISPR/Cas9 technology. The resulting transgenic lines will subsequently be analyzed to functionally elucidate the role of putatively AR-associated Parascaris Pgp sequence polymorphisms.
With the rapid advancement of regenerative medicine technologies, there is an urgent need for the development of new, cell-friendly techniques for obtaining nanofibers—the raw material for an artificial extracellular matrix production. We investigated the structure and properties of PCL10 nanofibers, PCL5/PCL10 core-shell type nanofibers, as well as PCL5/PCLAg nanofibres prepared by electrospinning. For the production of the fiber variants, a 5–10% solution of polycaprolactone (PCL) (Mw = 70,000–90,000), dissolved in a mixture of formic acid and acetic acid at a ratio of 70:30 m/m was used. In order to obtain fibers containing PCLAg 1% of silver nanoparticles was added. The electrospin was conducted using the above-described solutions at the electrostatic field. The subsequent bio-analysis shows that synthesis of core-shell nanofibers PCL5/PCL10, and the silver-doped variant nanofiber core shell PCL5/PCLAg, by using organic acids as solvents, is a robust technique. Furthermore, the incorporation of silver nanoparticles into PCL5/PCLAg makes such nanofibers toxic to model microbes without compromising its biocompatibility. Nanofibers obtained such way may then be used in regenerative medicine, for the preparation of extracellular scaffolds: (i) for controlled bone regeneration due to the long decay time of the PCL, (ii) as bioscaffolds for generation of other types of artificial tissues, (iii) and as carriers of nanocapsules for local drug delivery. Furthermore, the used solvents are significantly less toxic than the solvents for polycaprolactone currently commonly used in electrospin, like for example chloroform (CHCl3), methanol (CH3OH), dimethylformamide (C3H7NO) or tetrahydrofuran (C4H8O), hence the presented here electrospin technique may allow for the production of multilayer nanofibres more suitable for the use in medical field.
This study was designed to evaluate the relationship between Programmed cell death protein 6 (PDCD6) polymorphisms and cancer susceptibility. The online databases were searched for relevant case-control studies published up to November 2017. Review Manage (RevMan) 5.3 was used to conduct the statistical analysis. The pooled odds ratio (OR) with its 95% confidence interval (CI) was employed to calculate the strength of association. Overall, our results indicate that PDCD6 rs3756712 T>G polymorphism was significantly associated with decreased risk of cancer under codominant (OR = 0.82, 95%CI = 0.70–0.96, p = 0.01, TG vs TT; OR = 0.53, 95%CI = 0.39-0.72, p < 0.0001, GG vs TT), dominant (OR = 0.76, 95%CI = 0.66-0.89, p = 0.0004, TG+GG vs TT), recessive (OR = 0.57, 95%CI = 0.43-0.78, p = 0.0003, GG vs TT+TG), and allele (OR = 0.76, 95%CI = 0.67–0.86, p < 0.00001, G vs T) genetic model. The finding did not support an association between rs4957014 T>G polymorphism of PDCD6, and different cancers risk.
Lysosome‐associated protein transmembrane‐4 beta (LAPTM4B) has two alleles named as LAPTM4B*1 and LAPTM4B*2 (GenBank No. AY219176 and AY219177). Allele *1 has a single copy of a 19‐bp sequence in the 5` untranslated region (5`UTR), but allele *2 contains tandem repeats of 19‐bp sequence. LAPTM4B gene is located on long chromosome 8 (8q22.1) and contains seven exons that encodes two isoforms of tetratransmembrane proteins, LAPTM4B‐24 and LAPTM4B‐35, with molecular weights of 25 kDa and 35 kDa respectively. The LAPTM4B‐35′s primary structure is formed by 317 amino acid residues, and LAPTM4B‐24 comprised 226 amino acids. LAPTM4B, an integral membrane protein, contains several lysosomal‐targeting motifs at the C terminus and colocalizes with late endosomal and lysosomal markers. LAPTM4B is a proto‐oncogene, which becomes up‐regulated in various cancers. Preceding studies have examined the possible link between LAPTM4B polymorphism and susceptibility to several cancers,but the findings are still inconsistent. Hence, the present meta‐analysis was designed to investigate the impact of LAPTM4B polymorphism on risk of cancer.
Follicle‐stimulating hormone (FSH) has been used in inconclusive clinical trials for male idiopathic infertility in the past. FSH is sometimes prescribed empirically for male idiopathic infertility, showing some improvement in sperm parameters in about half of the patients. In this opinion article, we briefly analyze the pathophysiological evidences in favor of a more aggressive approach in planning future studies on pharmacological FSH use in male infertility, in analogy with the FSH use for multiple follicular growth in women undergoing ovarian stimulation for assisted reproduction. There is sufficient evidence that spermatogenesis does not run at its top in the primate and that some extra FSH can stimulate spermatogenesis over its baseline. Existing data suggest that the pharmacological regimens applied so far were insufficient, both in dosage and in duration, to elicit this response in about half of the patients. A paradigm change is needed now: We should move away from the classical, endocrinological approach, which simply applied the substitutive, therapeutic regimen used in hypogonadotropic hypogonadism, toward testing a ‘testicular hyperstimulation’ scheme for a time sufficient to cover more than only one spermatogenic cycle, a concept to be verified in an appropriately controlled, prospective, randomized clinical trial.
This review article discusses the active constituents and potential of two menthol mint oils, Mentha piperita (MPEO) and Mentha arvensis (MAEO), as natural sources for botanical pesticides. The biological activities of these menthol mint oils, which can be useful in agriculture, have been broadly researched, especially toward phytotoxic microorganisms. To a lesser extent, the insecticidal and herbicidal activities of mint EOs have also been studied. It is apparent that the prospect of using menthol mint oils in agriculture is increasing in popularity. A number of investigations showed that the in vitro efficacy of MPEO and MAEO, as well as that of their main constituent, menthol, is pronounced. The results of in vitro research are useful for choosing EOs for further investigations. However, it is clear that in situ experiments are crucial and should be more extensively developed. At the same time, known techniques are to be applied to this area and new methods should be worked out, aiming at the improvement of EOs’ pesticidal efficacy and cost-effectiveness, for future implementation in agricultural pest control.
Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic Gd III-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of Tb III-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analog substituted with a phthalimide chromophore (Tb III-DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analog demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behavior. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.
Tuberculosis is the leading cause of death by an infectious disease worldwide1. However, the involvement of innate lymphoid cells (ILCs) in immune responses to infection with Mycobacterium tuberculosis (Mtb) is unknown. Here we show that circulating subsets of ILCs are depleted from the blood of participants with pulmonary tuberculosis and restored upon treatment. Tuberculosis increased accumulation of ILC subsets in the human lung, coinciding with a robust transcriptional response to infection, including a role in orchestrating the recruitment of immune subsets. Using mouse models, we show that group 3 ILCs (ILC3s) accumulated rapidly in Mtb-infected lungs and coincided with the accumulation of alveolar macrophages. Notably, mice that lacked ILC3s exhibited a reduction in the accumulation of early alveolar macrophages and decreased Mtb control. We show that the C-X-C motif chemokine receptor 5 (CXCR5)–C-X-C motif chemokine ligand 13 (CXCL13) axis is involved in Mtb control, as infection upregulates CXCR5 on circulating ILC3s and increases plasma levels of its ligand, CXCL13, in humans. Moreover, interleukin-23-dependent expansion of ILC3s in mice and production of interleukin-17 and interleukin-22 were found to be critical inducers of lung CXCL13, early innate immunity and the formation of protective lymphoid follicles within granulomas. Thus, we demonstrate an early protective role for ILC3s in immunity to Mtb infection.
The Rho GTPase family belongs to the Ras superfamily and includes approximately 20 members in humans. Rho GTPases are important in the regulation of diverse cellular functions, including cytoskeletal dynamics, cell motility, cell polarity, axonal guidance, vesicular trafficking, and cell cycle control. Changes in Rho GTPase signaling play an essential regulatory role in many pathological conditions, such as cancer, central nervous system diseases, and immune system-dependent diseases. The posttranslational modification of Rho GTPases (i.e., prenylation by mevalonate pathway intermediates) and GTP binding are key factors which affect the activation of this protein. In this paper, two essential and simple methods are provided to detect a broad range of Rho GTPase prenylation and GTP binding activities. Details of the technical procedures that have been used are explained step by step in this manuscript.
L’accident vasculaire cérébral (AVC) est la première cause de handicap acquis de l’adulte, la deuxième cause de démence et la troisième cause de mortalité en France. Parmi les AVC, 89 % sont ischémiques. Le vieillissement de la population laisse présager une augmentation du nombre de patients victimes d’AVC dans les années à venir.
La prévention des infarctus cérébraux est un enjeu important de la prise en charge des AVC compte tenu du risque élevé de récidive. Après un premier infarctus cérébral, le risque de récidive est estimé à 10 % la première année et entre 20 et 30 % à 5 ans. La survenue d’un AVC est favorisée par des facteurs de risque cardiovasculaire connus et accessibles à la prévention. Le contrôle des facteurs de risque comme l’hypertension artérielle (HTA), le diabète, la dyslipidémie et le tabac est indispensable en cas d’AVC d’origine athéromateuse ou de suspicion de pathologie athéroscléreuse sous-jacente. Lorsque la cause d’un infarctus cérébral ou d’un accident ischémique transitoire (AIT) est connue, le traitement spécifique de l’étiologie est un élément indispensable à la prévention secondaire.
Recombinant follicle-stimulating hormone (FSH) (follitropin alfa) and biosimilar preparations are available for clinical use. They have specific FSH activity and a unique glycosylation profile dependent on source cells. The aim of the study is to compare the originator (reference) follitropin alfa (Gonal-f®)- with biosimilar preparations (Bemfola® and Ovaleap®)-induced cellular responses in vitro. Gonadotropin N-glycosylation profiles were analyzed by ELISA lectin assay, revealing preparation specific-patterns of glycan species (Kruskal-Wallis test; p < 0.05, n = 6) and by glycotope mapping. Increasing concentrations of Gonal-f® or biosimilar (1 × 10−3-1 × 103 ng/ml) were used for treating human primary granulosa lutein cells (hGLC) and FSH receptor (FSHR)-transfected HEK293 cells in vitro. Intracellular cAMP production, Ca2+ increase and β-arrestin 2 recruitment were evaluated by BRET, CREB, and ERK1/2 phosphorylation by Western blotting. 12-h gene expression, and 8- and 24-h progesterone and estradiol synthesis were measured by real-time PCR and immunoassay, respectively. We found preparation-specific glycosylation patterns by lectin assay (Kruskal-Wallis test; p < 0.001; n = 6), and similar cAMP production and β-arrestin 2 recruitment in FSHR-transfected HEK293 cells (cAMP EC50 range = 12 ± 0.9–24 ± 1.7 ng/ml; β-arrestin 2 EC50 range = 140 ± 14.1–313 ± 18.7 ng/ml; Kruskal-Wallis test; p ≥ 0.05; n = 4). Kinetics analysis revealed that intracellular Ca2+ increased upon cell treatment by 4 μg/ml Gonal-f®, while equal concentrations of biosimilars failed to induced a response (Kruskal-Wallis test; p < 0.05; n = 3). All preparations induced both 8 and 24 h-progesterone and estradiol synthesis in hGLC, while no different EC50s were demonstrated (Kruskal-Wallis test; p > 0.05; n = 5). Apart from preparation-specific intracellular Ca2+ increases achieved at supra-physiological hormone doses, all compounds induced similar intracellular responses and steroidogenesis, reflecting similar bioactivity, and overall structural homogeneity.
Editorial on the Research Topic.
Propagating life to the next generation is a hormone-dependent process relying on the individualwish to generate own progeny and resulting in maintenance of species. This Research Topicis dedicated to Follicle–Stimulating Hormone (FSH) and itsreceptor (FSHR) and their rolein reproduction. FSH is a typical example of a drug which entered clinical use in the “pre-evidence-basedmedicine era,” just for its efficacy in stimulating gonadal function and fertility in hypogonadotropichypogonadism. More recently, FSH entered clinical use in controlled ovarian stimulation in orderto obtain multiple follicular growth for assisted reproduction. Given the progressive increase incouple infertility, the demand for assisted reproduction grows steadily and the FSH market isflourishing. Yet, very little was known about the FSH mode of action until a few years ago,and the therapeutic use of FSH is still far from being evidence-based. But great progress in ourunderstanding of FSH action was made in the last two decades and, since not many scientistsaround the world are active in the gonadotropin/FSH research “niche,” we thought it was time tocall them to report to tell us their view on the state-of-the-art. The result is this “Research Topic.”
Commercial gonadotropin-releasing hormone (GnRH) antagonists differ by 1–2 amino acids and are used to inhibit gonadotropin production during assisted reproduction technologies (ART). In this study, potencies of three GnRH antagonists, Cetrorelix, Ganirelix and Teverelix, in inhibiting GnRH-mediated intracellular signaling, were compared in vitro. GnRH receptor (GnRHR)-transfected HEK293 and neuroblastoma-derived SH-SY5Y cell lines, as well as mouse pituitary LβT2 cells endogenously expressing the murine GnRHR, were treated with GnRH in the presence or absence of the antagonist. We evaluated intracellular calcium (Ca2+) and cAMP increases, cAMP-responsive element binding-protein (CREB) and extracellular-regulated kinase 1 and 2 (ERK1/2) phosphorylation, β-catenin activation and mouse luteinizing-hormone β-encoding gene (Lhb) transcription by bioluminescence resonance energy transfer (BRET), Western blotting, immunostaining and real-time PCR as appropriate. The kinetics of GnRH-induced Ca2+ rapid increase revealed dose-response accumulation with potency (EC50) of 23 nM in transfected HEK293 cells, transfected SH-SY5Y and LβT2 cells. Cetrorelix inhibited the 3 × EC50 GnRH-activated calcium signaling at concentrations of 1 nM–1 µM, demonstrating higher potency than Ganirelix and Teverelix, whose inhibitory doses fell within the 100 nM–1 µM range in both transfected HEK293 and SH-SY5Y cells in vitro. In transfected SH-SY5Y, Cetrorelix was also significantly more potent than other antagonists in reducing GnRH-mediated cAMP accumulation. All antagonists inhibited pERK1/2 and pCREB activation at similar doses, in LβT2 and transfected HEK293 cells treated with 100 nM GnRH. Although immunostainings suggested that Teverelix could be less effective than Cetrorelix and Ganirelix in inhibiting 1 µM GnRH-induced β-catenin activation, Lhb gene expression increase occurring upon LβT2 cell treatment by 1 µM GnRH was similarly inhibited by all antagonists. To conclude, this study has demonstrated Cetrorelix-, Ganirelix- and Teverelix-specific biased effects at the intracellular level, not affecting the efficacy of antagonists in inhibiting Lhb gene transcription.
Unprotected β-(het)aryl-β-fluoroalkyl β-amino acids and their α-hydroxy derivatives can be readily obtained using a decarboxylative Mannich-type reaction without protection/deprotection steps. This protocol utilizes lithium hexamethyldisilazide and (het)arylfluoroalkyl ketones to generate NH-ketimine intermediates. The mild reaction conditions allow the preparation of original fluorinated β-amino acids as useful building blocks in a practical and scalable manner.
To dynamically characterize the thermal properties of the fructose-rich exopolysaccharide (EPS1-T14), produced by the marine thermophilic Bacillus licheniformis T14, the Attenuated Total Reflectance Fourier Transform Infra-Red spectroscopy was coupled to variable temperature ranging from ambient to 80 °C.
The spectra were analyzed by the following innovative mathematical tools: i) non-ideal spectral deviation, ii) OH-stretching band frequency center shift, iii) spectral distance, and iv) wavelet cross-correlation analysis.
The thermal restraint analysis revealed that the whole EPS1-T14 system possessed high stability until 80 °C, and suggested that fucose was mainly involved in the EPS1-T14 thermal stability, whereas glucose was responsible for its molecular flexibility.
Our results provide novel insights into the thermal stability properties of the whole EPS1-T14 and into the role of its main monosaccharidic units. As a new biopolymer, the thermostable EPS1-T14 could be used in traditional biotechnology fields and in new biomedical areas, as nanocarriers, requiring high temperature processes.
Grape canes are waste biomass of viticulture containing bioactive polyphenols valuable in cosmetics. Whereas several studies reported the cosmetic activities of E-resveratrol, only few described the potential of E-ε-viniferin, the second major constituent of grape cane extracts (GCE), and none of them investigated GCE as a natural blend of polyphenols for cosmetic applications. In this study, we considered the potential of GCE from polyphenol-rich grape varieties as multifunctional cosmetic ingredients. HPLC analysis was performed to quantify major polyphenols in GCE i.e., catechin, epicatechin, E-resveratrol, E-piceatannol, ampelopsin A, E-ε-viniferin, hopeaphenol, isohopeaphenol, E-miyabenol C and E-vitisin B from selected cultivars. Skin whitening potential through tyrosinase inhibition assay and the activation capacity of cell longevity protein (SIRT1) of GCE were compared to pure E-resveratrol and E-ε-viniferin. Drug-likeness of GCE polyphenols were calculated, allowing the prediction of skin permeability and bioavailability. Finally, the present data enabled the consideration of GCE from polyphenol-rich varieties as multifunctional cosmetic ingredients in accordance with green chemistry practices.
The Madagascar periwinkle (Catharanthus roseus) synthesizes the highly valuable monoterpene indole alkaloids (MIAs) through a long metabolic route initiated by the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. In leaves, a complex compartmentation of the MIA biosynthetic pathway occurs at both the cellular and subcellular levels, notably for some gene products of the MEP pathway. To get a complete overview of the pathway organization, we cloned four genes encoding missing enzymes involved in the MEP pathway before conducting a systematic analysis of transcript distribution and protein subcellular localization. RNA in situ hybridization revealed that all MEP pathway genes were coordinately and mainly expressed in internal phloem-associated parenchyma of young leaves, reinforcing the role of this tissue in MIA biosynthesis. At the subcellular level, transient cell transformation and expression of fluorescent protein fusions showed that all MEP pathway enzymes were targeted to plastids. Surprisingly, two isoforms of 1-deoxy-D-xylulose 5-phosphate synthase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase initially exhibited an artifactual aggregated pattern of localization due to high protein accumulation. Immunogold combined with transmission electron microscopy, transient transformations performed with a low amount of transforming DNA and fusion/deletion experiments established that both enzymes were rather diffuse in stroma and stromules of plastids as also observed for the last six enzymes of the pathway. Taken together, these results provide new insights into a potential role of stromules in enhancing MIA precursor exchange with other cell compartments to favor metabolic fluxes towards the MIA biosynthesis.
Surface PEGylation of nanoparticles designed for biomedical applications is a common and straightforward way to stabilize the materials for in vivo administration and to increase their circulation time. This strategy becomes less trivial when MRI active porous nanomaterials are concerned as their function relies on water/proton-exchange between the pores and bulk water. Here we present a comprehensive study on the effects of PEGylation on the relaxometric properties of nanozeolite LTL (dimensions of 20 × 40 nm) ion-exchanged with paramagnetic GdIII ions. We evidence that as long as the surface grafting density of the PEG chains does not exceed the “mushroom” regime (conjugation of up to 6.2 wt % of PEG), Gd-LTL retains a remarkable longitudinal relaxivity (38 s–1 mM–1 at 7 T and 25 °C) as well as the pH-dependence of the longitudinal and transverse relaxation times. At higher PEG content, the more compact PEG layer (brush regime) limits proton/water diffusion and exchange between the interior of LTL and the bulk, with detrimental consequences on relaxivity. Furthermore, PEGylation of Gd-LTL dramatically decreases the leakage of toxic GdIII ions in biological media and in the presence of competing anions, which together with minimal cytotoxicity renders these materials promising probes for MRI applications.
Stem cells are increasingly being used in the course of burn treatment. As several different types of stem cells are available for the purposes, it is important to chose the most efficient and the most practicable stem cell type. The aim of this study was to compare the potential of heterogeneous amnion cell mixture with the presently used standard therapy, the adipose tissue-derived stem cells. The placenta was collected during a Cesarean section procedure. Adipose tissue tissue-derived cells were isolated using the Cytori’s Celution® System. Cells were tested for fulfillment of the minimum criteria for stem cells. The efficiency of cell cultures was tested by an analysis of population doubling, cell proliferation, cell cycle and cell migration. Amniotic cells presented a higher ability for differentiation to chondrocytes and osteocytes than adipose-derived regenerative cells but a lower ability for differentiation toward adipocytes. Additionally, in vitro experiments have demonstrated a higher applicability of amniotic cells than adipose tissue-derived stem cells. Amniotic cells show several advantages: easy access to placenta, low costs and a lack of ethical dilemmas related to stem cell harvesting. The main disadvantage is, however, their availability, as isogenic treatment would only be possible for women around children-bearing age, unless personalized banks for amniotic cells would be established.
We read, with great interest, the article entitled “Computerized measurement of the location and value of the minimum sagittal linear dimension of the upper airway on reconstructed lateral cephalograms compared with 3-dimensional values” (Alwadei AH, Galang-Boquiren MTS, Kusnoto B, et al. Am J Orthod Dentofacial Orthop 2018;154:780-787). Alwadei et al used cone-beam computed tomography (CBCT) and described significant correlations between the minimum sagittal linear dimension on reconstructed lateral cephalograms and both the minimum cross-sectional area and the airway volume. This article was a valuable contribution to the evolving debate on the diagnostic tools for obstructive sleep apnea (OSA).
Most species of moths use a female-produced volatile sex pheromone, typically produced via de novo fatty acid synthesis in a specialized gland, for communication among mates. While de novo biosynthesis of pheromone (DNP) is rapid, suggesting transient precursor acids, substantial amounts of pheromone precursor (and other) acids are stored, predominantly in triacylglycerols in the pheromone gland. Whether these stored acids are converted to pheromone later or not has been the subject of some debate. Using a tracer/tracee approach, in which we fed female Heliothis virescens U-13C-glucose, we were able to distinguish two pools of pheromone, in which precursors were temporally separated (after and before feeding on labeled glucose): DNP synthesized from a mixed tracer/tracee acetyl CoA pool after feeding, and pheromone made from precursor acids primarily synthesized before feeding, which we call recycled precursor fat pheromone (RPP). DNP titer varied from high (during scotophase) to low (photophase) and with presence/absence of pheromone biosynthesis activating neuropeptide (PBAN), in accord with native pheromone titer previously observed. By contrast, RPP was constant throughout the photoperiod and did not change with PBAN presence/absence. The amount of RPP (6.3–10.3 ng/female) was typically much lower than that of DNP, especially during the scotophase (peak DNP, 105 ng/female). We propose an integral role for stored fats in pheromone biosynthesis, in which they are hydrolyzed and re-esterified throughout the photoperiod, with a small proportion of liberated precursor acyl CoAs being converted to pheromone. During the sexually active period, release of PBAN results in increased flux of glucose (from trehalose) and hydrolyzed acids entering the mitochondria, producing acetyl CoA precursor for de novo fat and pheromone biosynthesis.
Previous studies have shown that exposure to high frequency electromagnetic fields induces alterations in simple organic systems such as proteins in bidistilled water solution.
The aim of this study was to test the shielding action of sodium chloride in bidistilled water solution against exposure to a high frequency electromagnetic field, in order to evaluate if the addition of NaCl in proteins aqueous solution can be considered a valuable bioprotector against electromagnetic fields.
Samples of 250 μl of different hemoglobin aqueous solutions, in the absence or presence of sodium-chloride, were exposed for 3 hours to an electromagnetic field at 1750 MHz at a power density around 1 W/m2 emitted by an operational mobile phone. Fourier Transform Infrared Spectroscopy was used to study the effects of exposure on the secondary structure of hemoglobin also in the presence of sodium-chloride.
Spectral analysis evidenced that significant increase in intensity of the Amide I and II vibration bands in hemoglobin bidistilled water solution occurred after exposure to the electromagnetic field. This result can be due to the increase of dipole moment of the protein due to the alignment of α-helix towards the direction of the field. In contrast, no appreciable change was observed in hemoglobin in sodium-chloride water solution after exposure.
This protective effect of sodium-chloride can be explained by the orientation of water molecules due to the strong electric field around each ion that reduces the possibility of rotation of the protein in response to an applied electromagnetic field.
Efforts to elucidate the causes of biological differences between wild fowls and their domesticated relatives, the chicken, have to date mainly focused on the identification of single nucleotide mutations. Other types of genomic variations have however been demonstrated to be important in avian evolution and associated to variations in phenotype. They include several types of sequences duplicated in tandem that can vary in their repetition number. Here we report on genome size differences between the red jungle fowl and several domestic chicken breeds and selected lines. Sequences duplicated in tandem such as rDNA, telomere repeats, satellite DNA and segmental duplications were found to have been significantly re-shaped during domestication and subsequently by human-mediated selection. We discuss the extent to which changes in genome organization that occurred during domestication agree with the hypothesis that domesticated animal genomes have been shaped by evolutionary forces aiming to adapt them to anthropized environments.
Transposable element (TE) science has been significantly influenced by the pioneering ideas of David Finnegan near the end of the last century, as well as by the classification systems that were subsequently developed. Today, whole genome TE annotation is mostly done using tools that were developed to aid gene annotation rather than to specifically study TEs. We argue that further progress in the TE field is impeded both by current TE classification schemes and by a failure to recognize that TE biology is fundamentally different from that of multicellular organisms. Novel genome wide TE annotation methods are helping to redefine our understanding of TE sequence origins and evolution. We briefly discuss some of these new methods as well as ideas for possible alternative classification schemes. Our hope is to encourage the formation of a society to organize a larger debate on these questions and to promote the adoption of standards for annotation and an improved TE classification.
Transposable elements are driving forces for establishing genetic innovations such as transcriptional regulatory networks in eukaryotic genomes. Here, we describe a silencer situated in the last 300 bp of the Mos1 transposase open reading frame (ORF) which functions in vertebrate and arthropod cells. Functional silencers are also found at similar locations within three other animal mariner elements, i.e. IS630-Tc1-mariner (ITm) DD34D elements, Himar1, Hsmar1 and Mcmar1. These silencers are able to impact eukaryotic promoters monitoring strong, moderate or low expression as well as those of mariner elements located upstream of the transposase ORF. We report that the silencing involves at least two transcription factors (TFs) that are conserved within animal species, NFAT-5 and Alx1. These cooperatively act with YY1 to trigger the silencing activity. Four other housekeeping transcription factors (TFs), neuron restrictive silencer factor (NRSF), GAGA factor (GAF) and GTGT factor (GTF), were also found to have binding sites within mariner silencers but their impact in modulating the silencer activity remains to be further specified. Interestingly, an NRSF binding site was found to overlap a 30 bp motif coding a highly conserved PHxxYSPDLAPxD peptide in mariner transposases. We also present experimental evidence that silencing is mainly achieved by co-opting the host Polycomb Repressive Complex 2 pathway. However, we observe that when PRC2 is impaired another host silencing pathway potentially takes over to maintain weak silencer activity. Mariner silencers harbour features of Polycomb Response Elements, which are probably a way for mariner elements to self-repress their transcription and mobility in somatic and germinal cells when the required TFs are expressed. At the evolutionary scale, mariner elements, through their exaptation, might have been a source of silencers playing a role in the chromatin configuration in eukaryotic genomes.
Female moths release sex pheromone to attract mates. In most species, sex pheromone is produced in, and released from, a specific gland. In a previous study, we used empirical data and compartmental modeling to account for the major pheromone gland processes of female Chloridea virescens: synthesis, storage, catabolism and release; we found that females released little (20–30%) of their pheromone, with most catabolized. The recent publication of a new pheromone collection method led us to reinvestigate pheromone release and catabolism in C. virescens on the basis that our original study might have underestimated release rate (thereby overestimating catabolism) due to methodology and females not calling (releasing) continuously. Further we wished to compare pheromone storage/catabolism between calling and non-calling females. First, we observed calling intermittency of females. Then, using decapitated females, we used the new collection method, along with compartmental modeling, gland sampling and stable isotope labeling, to determine differences in pheromone release, catabolism and storage between (forced) simulated calling and non-calling females. We found, (i) intact 1 d females call intermittently; (ii) pheromone is released at a higher rate than previously determined, with simulations estimating that continuously calling females release ca. 70% of their pheromone (only 30% catabolized); (iii) extension (calling)/retraction of the ovipositor is a highly effective “on/off’ mechanism for release; (iv) both calling and non-calling females store most pheromone on or near the gland surface, but calling females catabolize less pheromone; (v) females are capable of producing and releasing pheromone very rapidly. Thus, not only is the moth pheromone gland efficient, in terms of the proportion of pheromone released Vs. catabolized, but it is highly effective at shutting on/off a high flux of pheromone for release.
Breast cancer is one of the most commonly diagnosed cancers around the globe and accounts for a large proportion of fatalities in women. Despite the advancement in therapeutic and diagnostic procedures, breast cancer still represents a major challenge. Current anti-breast cancer approaches include surgical removal, radiotherapy, hormonal therapy and the use of various chemotherapeutic drugs. However, drug resistance, associated serious adverse effects, metastasis and recurrence complications still need to be resolved which demand safe and alternative strategies. In this scenario, phytochemicals have recently gained huge attention due to their safety profile and cost-effectiveness. These phytochemicals modulate various genes, gene products and signalling pathways, thereby inhibiting breast cancer cell proliferation, invasion, angiogenesis and metastasis and inducing apoptosis. Moreover, they also target breast cancer stem cells and overcome drug resistance problems in breast carcinomas. Phytochemicals as adjuvants with chemotherapeutic drugs have greatly enhanced their therapeutic efficacy. This review focuses on the recently recognized molecular mechanisms underlying breast cancer chemoprevention with the use of phytochemicals such as curcumin, resveratrol, silibinin, genistein, epigallocatechin gallate, secoisolariciresinol, thymoquinone, kaempferol, quercetin, parthenolide, sulforaphane, ginsenosides, naringenin, isoliquiritigenin, luteolin, benzyl isothiocyanate, α-mangostin, 3,3′-diindolylmethane, pterostilbene, vinca alkaloids and apigenin.
Lignans and neolignans are important biologically active ingredients (BAIs) biosynthesized by Linum usitatissimum. These BAIs have multi-dimensional effects against cancer, diabetes and cardio vascular diseases. In this study, yeast extract (YE) was employed as an elicitor to evaluate its effects on dynamics of biomass, BAIs and antioxidant activities in L. usitatissimum cell cultures. During preliminary experiments, flax cultures were grown on different concentrations of YE (0–1000 mg/L), and 200 mg/L YE was found to be optimum to enhance several biochemical parameters in these cell cultures. A two-fold increase in fresh (FW) and dry weight (DW) over the control was observed in cultures grown on MS medium supplemented with 200 mg/L YE. Similarly, total phenolic (TPC; 16 mg/g DW) and flavonoids content (TFC; 5.1 mg/g DW) were also positively affected by YE (200 mg/L). Stimulatory effects of YE on biosynthesis of lignans and neolignans was also noted. Thus, 200 mg/L of YE enhanced biosynthesis of secoisolariciresinol diglucoside (SDG; 3.36-fold or 10.1 mg/g DW), lariciresinol diglucoside (LDG; 1.3-fold or 11.0 mg/g DW) and dehydrodiconiferyl alcohol glucoside (DCG; 4.26-fold or 21.3 mg/g DW) in L. usitatissimum cell cultures with respect to controls. This elicitation strategy could be scaled up for production of commercially feasible levels of these precious metabolites by cell cultures of Linum.
In this paper we introduce a fully flexible coarse-grained model of immunoglobulin G (IgG) antibodies parametrized directly on cryo-EM data and simulate the binding dynamics of many IgGs to antigens adsorbed on a surface at increasing densities. Moreover, we work out a theoretical model that allows to explain all the features observed in the simulations. Our combined computational and theoretical framework is in excellent agreement with surface-plasmon resonance data and allows us to establish a number of important results. (i) Internal flexibility is key to maximize bivalent binding, flexible IgGs being able to explore the surface with their second arm in search for an available hapten. This is made clear by the strongly reduced ability to bind with both arms displayed by artificial IgGs designed to rigidly keep a prescribed shape. (ii) The large size of IgGs is instrumental to keep neighboring molecules at a certain distance (surface repulsion), which essentially makes antigens within reach of the second Fab always unoccupied on average. (iii) One needs to account independently for the thermodynamic and geometric factors that regulate the binding equilibrium. The key geometrical parameters, besides excluded-volume repulsion, describe the screening of free haptens by neighboring bound antibodies. We prove that the thermodynamic parameters govern the low-antigen-concentration regime, while the surface screening and repulsion only affect the binding at high hapten densities. Importantly, we prove that screening effects are concealed in relative measures, such as the fraction of bivalently bound antibodies. Overall, our model provides a valuable, accurate theoretical paradigm beyond existing frameworks to interpret experimental profiles of antibodies binding to multi-valent surfaces of different sorts in many contexts.
At the colonization site of a foreign entity, plant cells alter their trajectory of growth and development. The resulting structure – a plant gall – accommodates various needs of the foreigner, which are phylogenetically diverse: viruses, bacteria, protozoa, oomycetes, true fungi, parasitic plants, and many types of animals, including rotifers, nematodes, insects, and mites. The plant species that make galls also are diverse. We assume gall production costs the plant. All is well if the foreigner provides a gift that makes up for the cost. Nitrogen‐fixing nodule‐inducing bacteria provide nutritional services. Gall wasps pollinate fig trees. Unfortunately for plants, most galls are made for foes, some of which are deeply studied pathogens and pests: Agrobacterium tumefaciens, Rhodococcus fascians, Xanthomonas citri, Pseudomonas savastanoi, Pantoea agglomerans, ‘Candidatus’ phytoplasma, rust fungi, Ustilago smuts, root knot and cyst nematodes, and gall midges. Galls are an understudied phenomenon in plant developmental biology. We propose gall inception for discovering unifying features of the galls that plants make for friends and foes, talk about molecules that plants and gall‐inducers use to get what they want from each other, raise the question of whether plants colonized by arbuscular mycorrhizal fungi respond in a gall‐like manner, and present a research agenda.
Background: This paper would be a starting point addressed to a methodology to minimize the effects on livings of man made Electromagnetic Fields (EMFs) pollution. Methods: Given that previous literature highlighted that the most relevant EMFs effects on biological systems can be due to resonance phenomena between electromagnetic field and organic matter, it was proposed here an algorithm to obtain values of frequencies of an applied electromagnetic field far from resonant frequencies, depending on the natural frequencies and viscous damper of a biological system. These frequencies have been named non-resonant frequencies. Results: The displacement of the α-helices in cellular membrane channels due to EMFs has been proposed as a relevant parameter for quantifying the result of the interaction between an applied EMF and organic matter, in order to find both the natural frequencies of a biological system and the resonant frequencies at which α-helices displacement should be maximum. Conclusion: The non-resonant frequencies can be obtained using the algorithm proposed here.
Amorphous calcium carbonate (ACC) is an unstable mineral phase, which is progressively transformed into aragonite or calcite in biomineralization of marine invertebrate shells or avian eggshells, respectively. We have previously proposed a model of vesicular transport to provide stabilized ACC in chicken uterine fluid where eggshell mineralization takes place. Herein, we report further experimental support for this model. We confirmed the presence of extracellular vesicles (EVs) using transmission EM and showed high levels of mRNA of vesicular markers in the oviduct segments where eggshell mineralization occurs. We also demonstrate that EVs contain ACC in uterine fluid using spectroscopic analysis. Moreover, proteomics and immunofluorescence confirmed the presence of major vesicular, mineralization-specific and eggshell matrix proteins in the uterus and in purified EVs. We propose a comprehensive role for EVs in eggshell mineralization, in which annexins transfer calcium into vesicles and carbonic anhydrase 4 catalyzes the formation of bicarbonate ions (HCO[Formula: see text]), for accumulation of ACC in vesicles. We hypothesize that ACC is stabilized by ovalbumin and/or lysozyme or additional vesicle proteins identified in this study. Finally, EDIL3 and MFGE8 are proposed to serve as guidance molecules to target EVs to the mineralization site. We therefore report for the first-time experimental evidence for the components of vesicular transport to supply ACC in a vertebrate model of biomineralization.
The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [MtbRho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of MtbRho at 3.3 Å resolution. The MtbRho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of MtbRho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of MtbRho and provides a framework for future antibiotic development.
Effective cancer treatment requires its early diagnosis in combination with safe drug delivery mechanisms. Up to date many therapeutics have failed due to their limited ability to reach the diseased site selectively without damaging healthy cells. Furthermore, none of the existing imaging techniques is absolutely reliable due to the differences in resolution and sensitivity. Therefore, synergistic combination of imaging modalities in one, typically nanodimensional, probe is the key-strategy to benefit from, for example the sensitive and quantifiable PET signal and the high resolution of MRI. Nanozeolites are among the most promising candidates for realization of this concept due to their unique crystalline structure capable of stable hosting of metal-ions with diagnostic and therapeutic properties. Even though, these materials have found many applications in various technologies, their medicinal potential still requires thorough investigations. This project aimed at the design, preparation and testing of novel nanozeolitic probes that can be applied as personalized drugs for diagnostic and therapeutic purposes
Periostin (POSTN) is a matricellular protein that plays a key role in development and repair within the biological matrix of the lung. POSTN is highly expressed in several cell types in lung such as epithelial or endothelial cells, fibroblasts, smooth muscle and mast cells, contributing to mucus secretion, alveolar epithelial repair, and lung fibrosis. However, the underlying mechanism how POSTN contributes to the development of lung inflammation remains unclear. In the current study, we attempted to determine whether treatment with a monoclonal anti-POSTN antibody induces a significant inhibition of asthmatic reactions in a mouse asthma model. Mice sensitized and challenged with papain evidenced an increased periostin expression in lung and typical asthmatic reactions, as follows: an increase in the number of eosinophils in bronchoalveolar lavage fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways, and Th2 cytokines including IL-4 and IL-5 and chemokines in the bronchoalveolar lavage (BAL) fluid; emphysema; the detection of thymic stromal lymphopoietin (TSLP) produced by epithelial cells. However, the administration of anti-POSTN prior to the final airway papain challenge resulted in a significant inhibition of all asthmatic reactions. We also demonstrated that anti-POSTN antibody treatment resulted in significant reductions on collagen expression and a reduction in the increased eosinophil. The treatment of animals with anti-POSTN resulted in a significant reduction in the concentrations of the chemokines (CCL-11 and CCL-17) in the airways, without any concomitant increase in the concentration of Th1 cytokines. This study identifies a novel therapeutic strategy for airway hyperresponsiveness, which uses antibodies reactive against POSTN via the inhibition of the Th2 response. It also provides theoretical evidence for the control of allergic asthma and fibrosis by targeting POSTN.
A novel strategy has been devised that allows a ligation of of thioacids and imidazolyl urea activated amines under aqueous conditions. This approach enables the traceless removal of imidazole and CO2 to directly generate the desired amide bond without affecting the side chain reactive side chain functional groups on the peptide chain. Meanwhile, the novel synthesis of peptide thioacid is also reported. |
Linum usitatissimum is a source of pharmacologically active lignans and neolignans. An effective protocol has been established for the enhanced biosynthesis of lignans and neolignans in cell cultures of Linum usitatissimum by using chitosan addition. Gene expression analysis of monolignols (PAL, CCR and CAD), lignans (DIR, PLR and UGT) and neolignans (PCBER) biosynthetic genes by RT-qPCR as well as monolignol biosynthetic PAL, CCR and CAD enzyme activities evidenced a stimulation following chitosan treatment. Validated reverse phase high-performance liquid chromatography coupled to diode array detection was used to quantify secoisolariciresinol diglucoside (SDG) and lariciresinol diglucoside (LDG), dehydrodiconiferyl alcohol glucoside (DCG) and guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG) showed that chitosan treated cell cultures had better accumulation of these metabolites. Maximum enhancements of 7.3-fold (28 mg/g DW) occurred for LDG, 3.5-fold (58.85 mg/g DW) in DCG and while the least enhancement of 2-fold (18.42 mg/g DW) for SDG was observed in 10 mg/l chitosan treated cell cultures than to controls. Furthermore, same concentration of chitosan also resulted in 1.3-fold increase in antioxidant activity. Compared to the lignans and neolignans accumulations observed in wild type and RNAi-PLR transgenic flaxseeds, chitosan-treated cell cultures appeared to be a very effective production system for these compounds.
Melatonin as plant growth regulator induces differential effects on metabolites that are responsible for reduction, capping and stabilization of zinc oxide nanoparticles. Phytochemical analysis of callus cultures was performed and results were compared with callus cultures supplemented with other plant growth regulators (α-napthalene acetic acid, 2,4-dichlorophenoxy acetic acid and thidiazuron). Highest total phenolic and flavonoid content [42.23 mg of gallic acid equivalent (GAE) g−1 DW and 36.4 mg of (quercetin equivalent) g−1 DW, respectively] were recorded at melatonin (1.0 µM) + NAA (13.5 µM). ZnONPs were synthesized from NAA (13.5 µM) and melatonin (1.0 µM) + NAA (13.5 µM)-induced calli extracts separately and characterized via X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR analysis confirmed the presence of phenolics and flavonoids that were mainly found responsible for reduction and capping of ZnONPs. SEM analysis showed triangular shaped ZnONPs synthesized from melatonin + NAA callus extract and these NPs were more dispersed as compared to the spherical-agglomerates of ZnONPs synthesized from NAA-mediated callus extract. Melatonin + NAA callus extract-mediated ZnONPs (having smaller size) were more potent against multiple drug resistant bacterial strains, e.g. Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa by producing zone of inhibitions 17 ± 0.76 mm,10 ± 0.57 mm and 13 ± 0.54 mm, respectively.
Fruits of Silybum marianum (L.) Gaernt are the main source of taxifolin derived flavonolignans. Together, these molecules constitute a mixture called silymarin with many useful applications for cosmetic and pharmaceutic industries. Here, a validated method for the separation of the silymarin constituents has been developed to ensure precision and accuracy in their quantification. Each compound was separated with a high reproducibility. Precision and repeatability of the quantification method were validated according to the AOAC recommendations. The method was then applied to study the natural variability of wild accessions of S. marianum. Analysis of the variation in the fruits composition of these 12 accessions from Pakistan evidenced a huge natural diversity. Correlation analysis suggested a synergistic action of the different flavonolignans to reach the maximal antioxidant activity, as determined by cupric ion reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP) assays. Principal component analysis (PCA) separated the 12 accessions into three distinct groups that were differing from their silymarin contents, whereas hierarchical clustering analysis (HCA) evidenced strong variations in their silymarin composition, leading to the identification of new silybin-rich chemotypes. These results proved that the present method allows for an efficient separation and quantification of the main flavonolignans with potent antioxidant activities.
Zinc oxide nanoparticles (NPs) have emerged as a novel elicitor for enhanced biosynthesis of secondary metabolites in in vitro plant cell cultures. The current study was aimed to explore elicitation abilities of ZnO-NPs for enhanced accumulation of lignans and neolignans in cell cultures of Linum usitatissimum. We optimized concentration of zinc oxide NPs before carrying out a full-fledged experiment. Subsequently, an optimum dose of 100 mg/l was introduced into the culture medium on day 0, days 0 and 15, and finally days 0 and 25. We observed that repeated elicitation stimulated various parameters and physiological responses in Linum usitatissimum cell cultures than one-time elicitation. Repeated elicitation of cell cultures on day 0 and 15 resulted in highest fresh weight (412.16 g/l) and lignans production (secoisolariciresinol diglucoside 284.12 mg/l: lariciresinol diglucoside 86.97 mg/l). Contrarily, repeated elicitation on day 0 and 25 resulted in highest DW (13.53 g/l), total phenolic production (537.44 mg/l), total flavonoid production (123.83 mg/l) and neolignans production (dehydrodiconiferyl alcohol glucoside 493.28 mg/l: guaiacylglycerol-β-coniferyl alcohol ether glucoside 307.69 mg/l). Enhancement in plant growth and secondary metabolites accumulation was several fold higher than controls. Furthermore, a linear relationship existed between total phenolic and flavonoid contents which in turn was correlated with higher antioxidant activities.
Linum flavum hairy root lines were established from hypocotyl pieces using Agrobacterium rhizogenes strains LBA 9402 and ATCC 15834. Both strains were effective for transformation but induction of hairy root phenotype was more stable with strain ATCC 15834. Whereas similar accumulation patterns were observed in podophyllotoxin-related compounds (6-methoxy-podophyllotoxin, podophyllotoxin and deoxypodophyllotoxin), significant quantitative variations were noted between root lines. The influence of culture medium and various treatments (hormone, elicitation and precursor feeding) were evaluated. The highest accumulation was obtained in Gamborg B5 medium. Treatment with methyl jasmonate, and feeding using ferulic acid increased the accumulation of aryltetralin lignans. These results point to the use of hairy root culture lines of Linum flavum as potential sources for these valuable metabolites as an alternative, or as a complement to Podophyllum collected from wild stands.
The fall armyworm Spodoptera frugiperda is recognized as a polyphagous, voracious, and economically important pest in America and other continents. The control of this pest has been used mainly chemical insecticides, but biological control is an alternative strategy, and different isolates of baculoviruses were evaluated for this control. In this work, the biological activity, in vitro susceptibility, phylogenetic relationship, and protein expression in insect cells of six SfNPV baculoviruses isolated from S. frugiperda were determined. The infection of the cell line Sf9 was permissive to four of the five SfNPVs strains and non-infective to the SfGV strain. SfNPV isolates from Argentina, Honduras and the USA were more virulent than those from Mexico, resulting in up to 12 and 1000 times more effectiveness. The genes lef-8, lef-9 y polh/granulin were partially amplified in five SfNPVs and the SfGV, where nucleotide changes were identified in lef-8 of the SfNPVs and lef-8, lef-9, and granulin from SfGV-RV. The phylogenetic analysis showed that the five strains SfNPVs turn out to be closely related to the others reported SfNPV, just like the strain SfGV-RV and SfGV. The protein expression of host cells in response to SfNPV-Fx identified six proteins differentially expressed. They are involved in changes in the host cell, altering its cellular structure and normal functions. The characterization from these six SfNPV strains has established the basis for exploring the specific mechanisms, evolution, and ecology to evaluate the potential to be used as biological control agents against S. frugiperda.
The tropical plant Madagascar periwinkle (Catharanthus roseus) is a natural source of anticancer monoterpene indole alkaloids (MIA), such as vinblastine and vincristine, two molecules of major interest and therapeutic values. The MIA biosynthetic pathway in C. roseus is described in the literature as the most complex pathway in all living organisms and shows, in planta, an outstanding compartmentation at both cellular and subcellular levels. Our approach aimed to producing vindoline and catharanthine, two precursors of vinblastine and vincristine, in yeast cell factories. In particular, we developed and optimized yeast cell factories efficiently converting tabersonine to vindoline. First, fine-tuning of heterologous gene copies restrained side metabolites synthesis towards vindoline production. Tabersonine to vindoline bioconversion was further enhanced through a rational medium optimization (pH, composition) and a sequential feeding strategy. Finally, a vindoline titer of 266 mg/L (88% yield) was reached in an optimized fed-batch bioreactor. This precursor-directed synthesis of vindoline thus paves the way towards a future industrial bioproduction through the valorization of abundant tabersonine resources.
Synaptic transmission is of critical importance for the neurons to communicate, and abnormalities are observed in neurodegenerative diseases, psychiatric disorders, and intellectual disability. Loss of the synaptic vesicle proteins is shared among these disorders and is being noted as one of the earliest hallmarks of neurogenerative diseases. Therefore, novel therapeutics targeting synapses are fundamental to improve brain plasticity and maintain a healthy brain function. Here, we propose to normalize synaptic protein levels by targeting unstable synaptic mRNAs using antisense RNA enhancer molecules with the ‘long-term goal’ of developing a therapy for patients with synaptic dysfunction, specifically in Alzheimer’s Disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Our ‘hypothesis’ is that stabilization of unstable synaptic mRNA’s by antisense RNA molecules will be effective in enhancing and restore the levels of downregulated synaptic proteins in AD and ALS. As a ‘proof of concept’ antisense RNA molecules targeting 5’UTR regions of unstable synaptic genes (synapsin and synaptophysin) fused to enhancer elements such as SINE. To explore the efficacy and specificity, three different binding domains that span the 5’UTR region and transcription start sites (-40/+32, -40/+4, -14/+4) per gene were prepared and screened in a cell line that endogenously expresses the target genes. Our preliminary results show that SINEUP elements enhanced protein translation of the synapsin dimer by 80% and the monomers by 40%. This significant enhancement can stimulate synaptogenesis, synaptic vesicle recruitment, and maintain the mature synapses. An increase in synaptophysin was also observed. Ex vivo studies using a diseased cell model are in progress to assess phenotype and function. This is a promising step toward targeting synapses in neurodegenerative diseases.
Reconstructed human epidermis (RHE) is an emerging skin model in pharmaceutical, toxicological and cosmetic sciences, yielding scientific and ethical advantages. RHEs remain costly, however, due to consumables and time required for their culture and a short shelf-life. Storing, i.e., freezing RHE could help reduce costs but little is known on the effects of freezing on the barrier function of RHE. We studied such effects using commercial EpiSkin™ RHE stored at −20, −80 and −150 °C for 1 and 10 weeks. We acquired intrinsic Raman spectra in the stratum corneum (SC) of the RHEs as well as spectra obtained following topical application of resorcinol in an aqueous solution. In parallel, we quantified the effects of freezing on the permeation kinetics of resorcinol from time-dependent permeation experiments. Principal component analyses discriminated the intrinsic SC spectra and the spectra of resorcinol-containing RHEs, in each case on the basis of the freezing conditions. Permeation of resorcinol through the frozen RHE increased 3- to 6-fold compared to fresh RHE, with the strongest effect obtained from freezing at −20 °C for 10 weeks. Due to the extensive optimization and standardization of EpiSkin™ RHE, the effects observed in our work may be expected to be more pronounced with other RHEs.
The free-living nematode Caenorhabditis elegans has been used for many years as an expression system for genes from parasitic species. We wished to further develop and improve this system by using CRISPR/Cas9 to delete specific genes from C. elegans and replace them with single copies of orthologous genes from the parasite, Haemonchus contortus. Initial experiments focussed on glc-3 which encodes a subunit of the glutamate-gated chloride channels, the target of the avermectin/milbemycin family of anthelmintics. We cloned the promoters from the glc-3 genes of both species and compared the expression patterns of mCherry under the control of both promoters. The C. elegans glc-3 promoter drove expression in a subset of head interneurons, as previously reported whereas the H. contortus promoter drove expression in a pharyngeal motoneuron, M4. We were able to generate heterozygous worms in which one copy of glc-3 was deleted, but we could never obtain homozygous knock-outs. Further investigation of the mRNAs encoded by glc-3 revealed a novel transcript, glc-3T, which encodes a severely truncated form of GLC-3. The presence of such truncated transcripts may explain the unexpected difficulties encountered in attempting to knock out ion channel genes in C. elegans.
Several ex vivo and in vitro skin models are available in the toolbox of dermatological and cosmetic research. Some of them are widely used in drug penetration testing. The excised skins show higher variability, while the in vitro skins provide more reproducible data. The aim of the current study was to compare the chemical composition of different skin models (excised rat skin, human skin and human reconstructed epidermis) by measurement of ceramides, cholesterol, lactate, urea, protein and water at different dephts of the tissues. The second goal was to compile a testing system which includes a skin-on-a-chip diffusion setup and a confocal Raman spectroscopy for testing drug diffusion across the skin barrier and accumulation in the tissue models. A hydrophylic drug caffeine and the P-glycoprotein substrate quinidine were used in the study as a topical cream formulation. The results indicate that although the transdermal diffusion of quinidine is lower, the skin accumulation was similar for the two drugs. The different skin models allowed comparable permeability for both compounds, but chemical composition differed. The human skin was abundant in ceramides and cholesterol, while the reconstructed skin contained less water and more urea and protein. Based on these results it can be concluded that skin-chip and confocal Raman microspectroscopy are suitable for monitoring drug penetration and distribution in different skin layers during and at the end of exposure. Furthermore, the human skin obtained from obese patients is not the most relevant model for skin absorption testing in pharmaceutical research.
Insects are the most evolutionarily and ecologically successful group of living animals, being present in almost all possible mainland habitats; however, they are virtually absent in the ocean, which constitutes more than 99% of the Earth’s biosphere. Only a few insect species can be found in the sea but they remain at the surface, in salt marshes, estuaries, or shallow waters. Remarkably, a group of 13 species manages to endure long immersion periods in the open sea, as well as deep dives, i.e., seal lice. During the evolutionary transition of pinnipeds from land to the ocean, echinophthiriid seal lice had to manage the gradual change to an amphibian lifestyle along with their hosts, some of which may spend more than 80% of the time submerged and performing extreme dives, some beyond 2000 m under the surface. These obligate and permanent ectoparasites have adapted to cope with hypoxia, high salinity, low temperature, and, in particular, conditions of huge hydrostatic pressures. A major remainig question is whether or not seal lice do breath underwater or, on the contrary they dramatically reduce their metabolism to spare oxygen when submerged. During the reported period, we investigated anatomical adaptations to prolongued immersion and also set up a method for measuring oxigen consumption in two media, air and water in small insects, both using state of the art methods.
In oviparous animals such as birds, embryonic development occurs in the egg, and after oviposition there is no further possibility of material exchange with the hen to fulfill the needs of the embryo. In such a context, the egg must contain all systems required for proper development of a living organism. Among these, the chorioallantoic membrane (CAM) is a novel placenta-like structure which is the nexus for many different physiological and metabolic processes including acid-base balance, breathing and calcium solubilization from the eggshell that is re-allocated to assist bone and tissue formation in the embryo. Moreover, it is believed to play a pivotal role in innate immunity to protect the embryo, in close interaction with the eggshell and the eggshell membranes. Therefore, weakening of the eggshell during CAM-mediated decalcification is hypothesized to be compensated by upregulation of innate immune mechanisms. In order to characterize this role of the CAM during embryonic development, we performed transcriptomics, proteomics and bioinformatics analyses. This residence was also the opportunity to stimulate a new international dynamic collaboration towards investigating innate immunity in diverse biomineralized structures (shells, bone, corals).
The purpose of current study was green synthesis of silver nanoparticles (AgNPs) from seeds and wild Silybum plants in comparison with their respective extracts followed by characterization and biological potency. The biologically synthesized AgNPs were subjected to characterization using techniques like XRD, FTIR, TEM, HPLC and SPE. Highly crystalline and stable NPs were obtained using Silybum wild plant (NP1) and seeds (NP3) with size range between 18.12 and 13.20 nm respectively. The synthesized NPs and their respective extracts revealed a vast range of biological applications showing antibacterial, antioxidant, anti-inflammatory, cytotoxic and antiaging potencies. The highest antioxidant activity (478.23 ± 1.9 μM, 176.91 ± 1.3 μM, 83.5 ± 1.6% μgAAE/ mg, 156.32 ± 0.6 μgAAE/mg) for ABTS, FRAP, FRSA, TRP respectively was shown by seed extract (NP4) followed by highest value of (117.35 ± 0.9 μgAAE/mg) for TAC by wild extract (NP2). The highest antifungal activity (3 mm ± 0.76) against Candida albicans was shown by NP3 while antibacterial activity of (6 mm against Klebsiella pneumonia) was shown by NP3 and NP4. The highest anti-inflammatory activity (38.56 ± 1.29 against COX1) was shown by NP2. Similarly, the high value of (48.89 ± 1.34 against Pentosidine-Like AGEs) was shown by NP4. Also, the high anti-diabetic activity (38.74 ± 1.09 against α-amylase) was shown by NP4. The extracts and the synthesized NPs have shown activity against hepato-cellular carcinoma (HepG2) human cells. The HPLC analysis revealed that the highest value of silymarin component (silybin B 2289 mg/g DW) was found for NP4. Silydianin is responsible for capping. Among the green synthesized AgNPs and the extracts used, the effect of NP4 was most promising for further use.